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1 Introduction

Consider a linear regression of an outcome Yi on a vector of treatments Xi and a vector of flex-
ible controls Wi. The treatments are assumed to be as good as randomly assigned conditional
on the controls. For example, Xi may indicate the assignment of individuals i to different
interventions in a stratified randomized control trial (RCT), with the randomization protocol
varying across some experimental strata indicators in Wi. Or, in an education value-added
model (VAM), Xi might indicate the matching of students i to different teachers or schools
with Wi including measures of student demographics and lagged achievement which yield a
credible selection-on-observables assumption. The regression might also be the first stage of an
instrumental variables (IV) regression leveraging the assignment of multiple decision-makers
(e.g. bail judges) indicated in Xi, which is as-good-as-random conditional on some controls
Wi. These sorts of regressions are widely used across many fields in economics.1

This paper shows that such multiple-treatment regressions generally fail to estimate convex
weighted averages of heterogeneous causal effects, and discusses solutions to this problem.
The problem may be surprising given an influential result in Angrist (1998), showing that
regressions on a single binary treatment Di and flexible controls Wi estimate a convex average
of treatment effects whenever Di is conditionally as good as randomly assigned. We show that
this result does not generalize to multiple treatments: regression estimates of each treatment’s
effect are generally contaminated by a non-convex average of the effects of other treatments.
Thus, the regression coefficient for a given treatment arm incorporates the effects of all arms.

We first derive a general characterization of such contamination bias in multiple-treatment
regressions.2 We show the core problem by focusing on the special case of a set of mutually
exclusive treatment indicators, though our characterization applies even when the treatments
are not restricted to be binary or mutually exclusive. To separate the problem from the
typical challenge of omitted variables bias (OVB), we assume a best-case scenario where
the covariate parametrization is flexible enough to include the treatment propensity scores
(e.g., with a linear covariate adjustment, we assume that the propensity scores are linear
in the covariates). This condition holds trivially if the only covariates are strata indicators.
Under these conditions, we show that the regression coefficient on each treatment identifies a

1Prominent RCTs where randomization probabilities vary across strata include Project STAR (Krueger,
1999) and the RAND Health Insurance Experiment (Manning et al., 1987). Prominent VAM examples include
studies of teachers (Kane & Staiger, 2008; Chetty et al., 2014), schools (Angrist et al., 2017; Angrist et al.,
2021; Mountjoy & Hickman, 2020), and healthcare institutions (Abaluck et al., 2021; Geruso et al., 2020).
Prominent “judge IV” examples include Kling (2006), Maestas et al. (2013), and Dobbie and Song (2015).

2Our use of the term “contamination” follows Sun and Abraham (2021), and differs from its use in some
analyses of clinical trials (e.g. Keogh-Brown et al., 2007) to describe settings where members of one treatment
group receive the treatment of another group—what economists typically call “non-compliance”. Our “bias”
terminology refers to an implication of our result: if a given treatment has constant effects, but the other
treatment effects are heterogeneous, the regression estimand is inconsistent for the given treatment effect.
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convex weighted average of its causal effects plus a contamination bias term given by a linear
combination of the causal effects of other treatments, with weights that sum to zero. Thus,
each treatment effect estimate will generally incorporate the effects of other treatments, unless
the effects are uncorrelated with the contamination weights. Since these weights sum to zero
some are necessarily negative—further complicating the interpretation of the coefficients.

Contamination bias arises because regression adjustment for the confounders in Wi is
generally insufficient for making the other treatments ignorable when estimating a given
treatment’s effect, even when this adjustment is flexible enough to avoid OVB. To see this
intuition clearly, suppose the only controls are strata indicators. OVB is avoided when the
treatments are as good as randomly assigned within strata. But because the treatments enter
the regression linearly, the Angrist (1998) result implies that the causal interpretation of a
given treatment’s coefficient is only guaranteed when its assignment depends linearly on both
the strata indicators and the other treatment indicators. With mutually exclusive treatments,
this condition fails because the dependence is inherently nonlinear—the probability of assign-
ment to a given treatment is zero if an individual is assigned to one of the other treatments,
regardless of their stratum, but strata indicators affect the treatment probability otherwise.
Such dependence generates contamination bias.3

Contamination bias also arises under an alternative “model-based” identifying assumption
that—rather than making assumptions on the treatment’s “design” (i.e. propensity scores)—
posits that the covariate specification spans the conditional mean of the potential outcome
under no treatment, Yi(0). In a linear model with unit and time fixed effects, this reduces
to the parallel trends restriction often used in difference-in-differences (DiD) and event study
regressions. It is common for Xi to include multiple indicators in such settings—for example,
the leads and lags relative to a treatment adoption date used to support the parallel trends
assumption or estimate treatment effect dynamics.4 We show that replacing the restriction
on propensity scores in our characterization with an assumption on Yi(0) generates an addi-
tional issue: the own-treatment weights are negative whenever the implicit propensity score
model used by the regression to partial out the covariates and the other treatments fits prob-
abilities greater than one. This result shows that the negative weighting and contamination
bias issues documented previously in the context of two-way fixed effects regressions (e.g.,
Goodman-Bacon, 2021; Sun & Abraham, 2021; de Chaisemartin & D’Haultfœuille, 2020,
2022; Callaway & Sant’Anna, 2021; Borusyak et al., 2022; Wooldridge, 2021; Hull, 2018b)
are more general—and conceptually distinct—problems.5 Negative weighting arises because

3This issue is distinct from the Freedman (2008b, 2008a) critique of using regression to analyze randomized
trials, which concerns estimation, not identification.

4Alternatively Xi may indicate multiple contemporaneous treatments, as in certain “mover” regressions.
5Our analysis also relates to issues with interpreting multiple-treatment IV estimates (Behaghel et al., 2013;

Kirkeboen et al., 2016; Kline & Walters, 2016; Hull, 2018a; Lee & Salanié, 2018; Bhuller & Sigstad, 2022).
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regressions leveraging model-based restrictions on Yi(0) may fit treatment probabilities exceed-
ing one. Contamination bias arises because additive covariate adjustments don’t account for
the non-linear dependence of a given treatment on the other treatments and covariates. This
generates a different form of propensity score misspecification: a non-zero fitted probability
of a given treatment, even when one of the other treatments is known to be non-zero.6

We then discuss three solutions to the contamination bias problem, and their trade-offs.
These solutions apply when the propensity scores are non-degenerate, such as in an RCT or
other “design-based” regression specification.7 First, a conceptually principled solution is to
adapt approaches to estimating the average treatment effect (ATE) of a conditionally ignorable
binary treatment to the multiple treatment case (e.g. Cattaneo, 2010; Chernozhukov et al.,
2018, 2021; Graham & Pinto, 2022). For example, one could run a regression that includes
interactions between the treatments and demeaned controls, or combine such regression with
inverse propensity score weighting for doubly-robust estimation. Such ATE estimators work
well under strong overlap of the covariate distribution for units in each treatment arm. But
they may be imprecise under limited overlap or be outright infeasible with overlap failures—
common scenarios in observational studies (Crump et al., 2009).

This practical consideration motivates an alternative approach: estimating a weighted av-
erage of treatment effects, as regression does in the binary treatment case, while avoiding the
contamination bias of multiple-treatment regressions. We derive the weights that are easiest
to estimate, in the sense of minimizing a semiparametric efficiency bound under homoskedas-
ticity. These easiest-to-estimate weights are always convex. They also coincide with the
implicit linear regression weights when the treatment is binary (i.e. the Angrist (1998) case),
formalizing a virtue of regression adjustment. In the multiple treatment case, the easiest-to-
estimate weighting can be implemented by a simple second solution: a linear regression which
restricts estimation to the individuals who are either in the control group or the treatment
group of interest. While trivial to implement, effects estimated using these one-treatment-at-
a-time regressions are not directly comparable, since the weighting is treatment-specific. The
third solution we discuss is to impose common weights across treatments in our optimization;
we show how these weights can be implemented using a weighted regression approach. We
give guidance for how researchers can gauge the extent of contamination bias in practice and

6While our results are framed in the context of a causal model, we show how analogous results apply
to descriptive regressions which seek to estimate averages of conditional group contrasts without assuming
a causal framework—as in studies of outcome disparities across multiple racial or ethnic groups, studies of
regional variation in healthcare utilization or outcomes, or studies of industry wage gaps.

7Solving the contamination bias problem under model-based identification approaches requires either tar-
geting subpopulations of the treated or applying substantive restrictions on the conditional means of potential
outcomes under treatment. We do not explore this case as it has already been studied extensively in the DiD
context (e.g. de Chaisemartin & D’Haultfœuille, 2022; Sun & Abraham, 2021; Callaway & Sant’Anna, 2021;
Borusyak et al., 2022; Wooldridge, 2021).
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implement these solutions in a new R and Stata package, multe.8

We study the empirical relevance of contamination bias in nine applications: six RCTs
with stratified randomization and three observational studies of racial disparities. We find
economically and statistically meaningful contamination bias in several of these applications.
Notably, the largest contamination bias is found in the observational studies while the small-
est is bias is found in the experimental studies. In a detailed analysis of one of the experi-
ments (the Project STAR trial) we show that the lack of contamination bias reflects limited
correlation between treatment effects and contamination weights and small variation in the
contamination weights, rather than limited effect heterogeneity. This analysis highlights the
importance of conducting contamination bias diagnostics, particularly in observational studies
where propensity score variation may cause large variability in the contamination weights.

We structure the rest of the paper as follows. Section 2 illustrates contamination bias in a
simple stylized setting. Section 3 characterizes the general problem, and discusses connections
to previous analyses. Section 4 three solutions, and gives guidance for measuring and avoid-
ing contamination bias in practice. Section 5 illustrates these tools using nine applications.
Section 6 concludes. Appendix A collects all proofs and extensions. Appendix B discusses the
connection between our contamination bias characterization and that in the DiD literature.
Details on the applications and additional exhibits are given in Appendices C and D.

2 Motivating Example

We build intuition for the contamination bias problem in two simple examples. We first
review how regressions on a single randomized binary treatment and binary controls identify
a convex average of heterogeneous treatment effects. We then show how this result fails to
generalize when we introduce an additional treatment arm. We base these examples on a
stylized version of the Project STAR experiment, which we return to as an application in
Section 5.1. The simple structure of these examples helps isolate the core mechanisms of
contamination bias. Later sections consider non-experimental settings with richer control
specifications, both theoretically and empirically.

2.1 Convex Weights with One Randomized Treatment

Consider the regression of an outcome Yi on a single treatment indicator Di ∈ {0, 1}, a single
binary control Wi ∈ {0, 1}, and an intercept:

Yi = α+ βDi + γWi + Ui. (1)
8The packages are avaiable at CRAN and https://github.com/gphk-metrics/stata-multe, respectively.
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By definition, Ui is a mean-zero regression residual that is uncorrelated with Di and Wi.
For example, analysing the Project STAR trial, Krueger (1999) primarily studied the effect
of small class size Di on the test scores Yi of kindergartners indexed by i. Project STAR
randomized students to classes within schools, with the fraction of students assigned to small
classes varying by school due to the varying number of total students in each school. To
account for this, Krueger (1999) included school fixed effects as controls. Such specifications
are often found in stratified RCTs with varying treatment assignment rates across a set of
pre-treatment strata. If we imagine two such strata, demarcated by a binary indicator Wi,
then eq. (1) corresponds to a stylized two-school version of a Project STAR regression.

We wish to interpret the coefficient β in terms of the causal effects of Di on Yi. For this we
use potential outcome notation, letting Yi(d) denote the test score of student i when Di = d.
Individual i’s treatment effect is then given by τ1i = Yi(1)− Yi(0), and we can write realized
achievement as Yi = Yi(0) + τ1iDi. Since treatment assignment is random within schools, Di

is conditionally independent of potential outcomes given Wi: (Yi(0), Yi(1)) ⊥ Di |Wi.
Angrist (1998) showed that regression coefficients like β identify a convexly-weighted av-

erage of within-strata ATEs. In our Project STAR example, this result shows that:

β = ϕτ1(0) + (1− ϕ)τ1(1), where ϕ =
var(Di |Wi = 0)Pr(Wi = 0)∑1

w=0 var(Di |Wi = w) Pr(Wi = w)
∈ [0, 1] (2)

gives a convex weighting scheme, and τ1(w) = E[Yi(1) − Yi(0) | Wi = w] is the ATE in
school w ∈ {0, 1}. Thus, in our example the coefficient β identifies a weighted average of
school-specific small classroom effects τ1(w) across the two schools.

Equation (2) can be derived by applying the Frisch-Waugh-Lovell (FWL) Theorem. The
multivariate regression coefficient β can be written as a univariate regression coefficient from
regressing Yi onto the population residual D̃i from regressing Di onto Wi and a constant:

β =
E[D̃iYi]

E[D̃2
i ]

=
E[D̃iYi(0)]

E[D̃2
i ]

+
E[D̃iDiτ1i]

E[D̃2
i ]

, (3)

where we substitute the potential outcome model for Yi in the second equality. Since Wi is
binary, the propensity score E[Di | Wi] is linear and the residual D̃i is mean independent of
Wi (not just uncorrelated with it): E[D̃i |Wi] = 0. Therefore,

E[D̃iYi(0)] = E[E[D̃iYi(0) |Wi]] = E[E[D̃i |Wi]E[Yi(0) |Wi]] = 0. (4)

The first equality in eq. (4) follows from the law of iterated expectations, the second equality
follows by the conditional random assignment ofDi and the third equality uses E[D̃i |Wi] = 0.
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Hence, the first summand in eq. (3) is zero. Analogous arguments show that

E[D̃iDiτ1i] = E[E[D̃iDiτ1i |Wi]] = E[E[D̃iDi |Wi]E[τ1i |Wi]] = E[var(Di |Wi)τ1(Wi)],

where var(Di | Wi) = E[D̃2
i | Wi] gives the conditional variance of the small-class treatment

within schools. Since E[var(Di | Wi)] = E[E[D̃2
i | Wi]] = E[D̃2

i ], it follows that we can write
the second summand in eq. (3) as

β =
E[var(Di |Wi)τ1(Wi)]

E[var(Di |Wi)]
= ϕτ1(0) + (1− ϕ)τ1(1),

proving the representation of β in eq. (2).
The key fact underlying this derivation is that the residual D̃i from the auxiliary regression

of the treatment Di on the other regressors Wi is mean-independent of Wi. By the FWL
theorem, treatment coefficients like β can always be represented as in eq. (3) even without
this property. We next show, however, that the remaining steps in the derivation of eq. (2) fail
when an additional treatment arm is included. This failure can be attributed to the fact that
the auxiliary FWL regression delivers a treatment residual that is uncorrelated with—but
not mean-independent of—the other regressors. The lack of mean independence leads to an
additional term in the expression for the regression coefficient.

2.2 Contamination Bias with Two Randomized Treatments

In reality, Project STAR randomized students to three mutually exclusive conditions within
schools: a control group with a regular class (Di = 0), a treatment that reduced class size
(Di = 1), and a treatment that introduced full-time teaching aides (Di = 2). We incorporate
this extension of our stylized example by considering a regression of student achievement Yi
on a vector of two treatment indicators, Xi = (Xi1, Xi2)

′, where Xik = 1{Di = k} indicates
assignment to treatment k = 1, 2. We continue to include a constant and the school indicator
Wi as controls, yielding the regression

Yi = α+ β1Xi1 + β2Xi2 + γWi + Ui. (5)

The observed outcome is now given by Yi = Yi(0) + τi1Xi1 + τi2Xi2, with τi1 = Yi(1)− Yi(0)

and τi2 = Yi(2)−Yi(0) denoting the potentially heterogeneous effects of a class size reduction
and introduction of a teaching aide, respectively. As before, we analyze this regression by
assuming Xi is conditionally independent of the potential achievement outcomes Yi(d) given
the school indicator Wi: (Yi(0), Yi(1), Yi(2)) ⊥ Xi |Wi.
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To analyze the coefficient on Xi1, we again use the FWL theorem to write

β1 =
E[

≈
Xi1Yi]

E[
≈
X2

i1]
=
E[

≈
Xi1Yi(0)]

E[
≈
X2

i1]
+
E[

≈
Xi1Xi1τi1]

E[
≈
X2

i1]
+
E[

≈
Xi1Xi2τi2]

E[
≈
X2

i1]
, (6)

where
≈
Xi1 again denotes a population residual, but now from regressing Xi1 on Wi, a constant,

and Xi2. Unlike before, this residual is uncorrelated with but not mean-independent of the
remaining regressors (Wi, Xi2) because the dependence between Xi1 and Xi2 is non-linear.
When Xi2 = 1, Xi1 must be zero regardless of the value of Wi (because they are mutually
exclusive) while ifXi2 = 0 the mean ofXi1 does depend onWi unless the treatment assignment
is completely random. Thus, in general,

≈
Xi1 ̸= Xi1 − E[Xi1 |Wi, Xi2].

Because
≈
Xi1 does not coincide with a conditionally de-meaned Xi1, we can not generally

reduce eq. (6) to an expression involving only the effects of the first treatment arm, τi1. It turns
out that we nevertheless still have E[

≈
Xi1Yi(0)] = 0, as in eq. (4), since the auxilliary regression

residuals are still uncorrelated with any individual characteristic like Yi(0).9 The regression
thus does not suffer from OVB. However, we do not generally have E[

≈
Xi1Xi2τi2] = 0. Instead,

simplifying eq. (6) by the same steps as before leads to the expression

β1 = E[λ11(Wi)τ1(Wi)] + E[λ12(Wi)τ2(Wi)] (7)

as a generalization of eq. (2). Here λ11(Wi) = E[
≈
Xi1Xi1 | Wi]/E[

≈
X2

i1] can be shown to
be non-negative and to average to one, similar to the ϕ weight in eq. (2). Thus, if not for
the second term in eq. (7), β1 would similarly identify a convex average of the conditional
ATEs τ1(Wi) = E[Yi(1) − Yi(0) | Wi]. But precisely because

≈
Xi1 ̸= Xi1 − E[Xi1 | Wi, Xi2],

this second term is generally present: λ12(Wi) = E[
≈
Xi1Xi2 | Wi]/E[

≈
X2

i1] is generally non-
zero, complicating the interpretation of β1 by including the conditional effects of the other
treatment τ2(Wi) = E[Yi(2)− Yi(0) |Wi].

The second contamination bias term in eq. (7) arises because the residualized small class
treatment

≈
Xi1 is not conditionally independent of the second full-time aide treatment Xi2

within schools, despite being uncorrelated with Xi2 by construction. This can be seen by
viewing

≈
Xi1 as the result of an equivalent two-step residualization. First, both Xi1 and

Xi2 are de-meaned within schools: X̃i1 = Xi1 − E[Xi1 | Wi] = Xi1 − p1(Wi) and X̃i2 =

Xi2 − E[Xi2 |Wi] = Xi2 − p2(Wi) where pj(Wi) = E[Xij |Wi] gives the propensity score for
treatment j. Second, a bivariate regression of X̃i1 on X̃i2 is used to generate the residuals
≈
Xi1. When the propensity scores vary across the schools (i.e. pj(0) ̸= pj(1)), the relationship

9To see this, note that in the auxiliary regression Xi1 = µ0+µ1Xi2+µ2Wi+
≈
Xi1 we can partial out Wi and

the constant from both sides to write X̃i1 = µ1X̃i2 +
≈
Xi1. Thus,

≈
Xi1 = X̃i1 − µ1X̃i2 is a linear combination

of residuals which, per eq. (4), are both uncorrelated with Yi(0). It follows that E[
≈
Xi1Yi(0)] = 0.
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between these residuals varies by school, and the line of best fit between X̃i1 and X̃i2 averages
across this relationship. As a result, the line of best fit does not isolate the conditional (i.e.
within-school) variation in Xi1: the remaining variation in

≈
Xi1 will tend to predict Xi2 within

schools, making the contamination weight λ12(Wi) non-zero.

2.3 Illustration and Intuition

A simple numerical example helps make the contamination bias problem concrete. Suppose
in the previous setting that school 0 (indicated by Wi = 0) assigned only 5 percent of the
students to the small classroom treatment, with 45 percent of the students assigned to the
full-time aide treatment and the rest assigned to the control group. In school 1 (indicated
by Wi = 1), there was a substantially larger push for students to be placed into treatment
groups with 45 percent of students assigned to a small classroom, 45 percent assigned to a
classroom with a full-time aide, and only 10 percent assigned to the control group. Therefore,
p1(0) = 0.05 and p2(0) = 0.45 while p1(1) = p2(1) = 0.45. Suppose that the schools have the
same number of students, so that Pr(Wi = 1) = 0.5. It then follows from the above formulas
that λ12(0) = 99/106 and λ12(1) = −99/106.

As reasoned above, the contamination weights are non-zero here because the within-school
correlation between the residualized treatments, X̃i1 and X̃i12, is heterogeneous: in school 0 it
is about −0.2, so that the value of the demeaned class aide treatment is only weakly predictive
of the small classroom treatment, while in school 1 it is highly predictive with correlation
−0.8. Figure D.1 in Appendix D illustrates this graphically, showing that because the overall
regression of X̃i1 on X̃i2 averages over these two correlations, the regression residuals are
predictive of the value of the class aide treatment.

To illustrate the potential magnitude of bias in this example, suppose that classroom
reductions have no effect on student achievement (so τ1(0) = τ1(1) = 0), but that the effect of
a teaching aide varies across schools. In school 1 the aide is highly effective, τ2(1) = 1, (which
may be the reason for the higher push in this school to place students into treatment groups)
but in school 0, the aide has no effect, τ2(0) = 0. By eq. (7), the regression coefficient on the
first treatment identifies

β1 = E[λ11(Wi) · 0] + E[λ12(Wi)τ2(Wi)] = 0 + (−99/106× 1 + 99/106× 0)/2 ≈ −0.47.

Thus, in this example, a researcher would conclude that small classrooms have a sizable
negative effect on student achievement—equal in magnitude to around half of the true teaching
aide effect in school 1—despite the true small-classroom effect being zero for all students. This
treatment effect coefficient can be engineered to match an arbitrary magnitude and sign by
varying the heterogeneity of the teaching aide effects across schools.
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To build further intuition for eq. (7), it is useful to consider two cases where the con-
tamination bias term is zero. First, note that since regression residuals are by construc-
tion uncorrelated with the included regressors, E[λ12(Wi)] = E[

≈
Xi1Xi2]/E[

≈
X2

i1] = 0. There-
fore, E[λ12(Wi)τ2(Wi)] = E[λ12(Wi)τ2(Wi)] − E[λ12(Wi)]E[τ2(Wi)] = cov(λ12(Wi), τ2(Wi)).
If the average effects of the teaching aide treatment are constant across the two schools,
τ2(1) = τ2(0), then τ2(Wi) is constant, and this covariance is zero such that contamination
bias disappears. More generally, when the average teaching aide treatment effects across
schools τ2(Wi) exhibit idiosyncratic variation, in the sense that they have a weak covariance
with the contamination weights across schools, the contamination bias term will be small.

Second, consider the case where Xi1 and Xi2 are independent conditional on Wi—such
as when the small classroom and teacher aid interventions are independently assigned within
schools, in contrast to the previously assumed mutual exclusivity of these treatments. In this
case the conditional expectation E[Xi1 | Wi, Xi2] = E[Xi1 | Wi] will be linear, since Xi1 and
Xi2 are unrelated given Wi, and will thus be identified by the auxiliary regression of Xi1 on
Wi, Xi2, and a constant. Consequently, the

≈
Xi1 residuals will coincide with Xi1−E[Xi1 |Wi].

The coefficient on Xi1 in eq. (5) can therefore be shown to be equivalent to the previous
eq. (2), identifying the same convex average of τ1(w). This case highlights that dependence
across treatments is necessary for the contamination bias to arise.

3 General Problem

We now derive a general characterization of the contamination bias problem, in regressions
of an outcome Yi on a K-dimensional treatment vector Xi and flexible transformations of a
control vector Wi. We focus on the case of mutually exclusive indicators Xik = 1{Di = k} for
values of an underlying treatment Di ∈ {0, . . . ,K} (with the 1{Di = 0} indicator omitted).
We extend the characterization to a general (i.e. potentially non-binary) Xi in Appendix A.1.

We suppose the effects of Xi on Yi are estimated by a partially linear model:

Yi = X ′
iβ + g(Wi) + Ui, (8)

where β and g are defined as the minimizers of expected squared residuals E[U2
i ]:

(β, g) = argmin
β̃∈RK ,g̃∈G

E[(Yi −X ′
iβ̃ − g̃(Wi))

2] (9)

for some linear space of functions G. This setup nests linear covariate adjustment by setting
G = {α + w′γ : [α, γ′]′ ∈ R1+dim(Wi)}, in which case eq. (8) gives a linear regression of Yi on
Xi, Wi, and a constant. The setup also allows for more flexible covariate adjustments—such
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as by specifying G to be a large class of “nonparametric” functions (e.g. Robinson, 1988).
Two examples highlight the generality of this setup:

Example 1 (Multi-Armed RCT). Wi is a vector of mutually-exclusive indicators for experi-
mental strata, within which Xi is randomly assigned to individuals i. g is linear.

Example 2 (Two-Way Fixed Effects). i = (j, t) indexes panel data, with a fixed set of units
j = 1, . . . , n observed over periods t = 1, . . . , T . Wi = (Ji, Ti) where Ji = j and Ti = t

denote the underlying unit and period, and g(Wi) = α + (1{Ji = 2}, . . . ,1{Ji = n},1{Ti =
2}, . . . ,1{Ti = T})′γ includes unit and period indicators. Xi contains indicators for leads and
lags relative to a deterministic treatment adoption date, A(j) ∈ {1, . . . , T} (with at least one
lead excluded to prevent collinearity).

Example 1 nests the motivating RCT example in Section 2, allowing for an arbitrary number
of experimental strata in Wi and multiple treatment arms in Xi. Example 2 shows that our
setup can also nest the kind of regressions considered in a recent literature on DiD and related
regression specifications (e.g. Goodman-Bacon, 2021; Hull, 2018b; Sun & Abraham, 2021; de
Chaisemartin & D’Haultfœuille, 2020, 2022; Callaway & Sant’Anna, 2021; Borusyak et al.,
2022; Wooldridge, 2021). We elaborate on the connections to this literature in Appendix B by
considering general two-way fixed effects (TWFE) specifications with non-random treatments.
These include specifications with multiple static treatment indicators, as in “mover regressions”
that leverage over-time transitions, as well as dynamic event study specifications.10

As a first step towards characterizing the β treatment coefficient vector, we solve the
minimization problem in eq. (9). Let X̃i denote the residuals from projecting Xi onto the
control specification, with elements X̃ik = Xik−argming̃∈G E[(Xik− g̃(Wi))

2]. It follows from
the projection theorem (e.g. van der Vaart, 1998, Theorem 11.1) that

β = E[X̃iX̃
′
i]
−1E[X̃iYi]. (10)

Applying the FWL theorem, each treatment coefficient can be written βk = E[
≈
XikYi]/E[

≈
X2

ik]

where
≈
Xik is the residual from regressing X̃ik on X̃i,−k = (X̃i1, . . . , X̃i,k−1, X̃i,k+1, . . . , X̃iK)′.

Letting E∗[Xik | Xi,−k,Wi] denote the projection of Xik onto the space {X ′
i,−kδ̃+ g̃(Wi) : δ̃ ∈

RK−1, g̃ ∈ G}, we may write these residuals as
≈
Xik = Xik − E∗[Xik | Xi,−k,Wi].

10Some papers in this DiD literature study issues we do not consider, such as when researchers fail to
include indicators for all relevant treatment states. This specification of Xi will generally add bias terms to
our decomposition of β, below. Similarly, we do not consider multicollinearity issues like in Borusyak et al.
(2022) by implicitly assuming a unique solution to eq. (9). For event studies this means we assume some units
are never treated, with A(j) = ∞.
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3.1 Causal Interpretation

We now consider the interpretation of each treatment coefficient βk in terms of causal effects.
Let Yi(k) denote the potential outcome of unit i when Di = k. Observed outcomes are
given by Yi = Yi(Di) = Yi(0) +X ′

iτi where τi is a vector of treatment effects with elements
τik = Yi(k)− Yi(0). We denote the conditional expectation of the vector of treatment effects
given the controls by τ(Wi) = E[τi | Wi], so that τk(Wi) is the conditional ATE for the
kth treatment. We let p(Wi) = E[Xi | Wi] denote the vector of propensity scores, so that
pk(Wi) = Pr(Di = k | Wi). Our characterization of contamination bias doesn’t require the
propensity scores to be bounded away from 0 and 1 and in fact allows them to be degenerate,
i.e. pk(w) ∈ {0, 1} for all w. This is the case in Example 2, since Xi is a non-random function
of Wi. We return to practical questions of propensity score support in Section 4.

We make two assumptions to interpret βk in terms of the effects τi. First, we assume
mean-independence of the potential outcomes and treatment, conditional on the controls:

Assumption 1. E[Yi(k) | Di,Wi] = E[Yi(k) |Wi] for all k.

A sufficient condition for this assumption is that the treatment is randomly assigned condi-
tional on the controls, making it conditionally independent of the potential outcomes:

(Yi(0), . . . , Yi(K)) ⊥ Di |Wi. (11)

Such conditional random assignment appears in Example 1. In Example 2, where treatment
is a non-random function of the unit and time indices in Wi, Assumption 1 holds trivially.

Second, we assume G is specified such that that one of two conditions holds:

Assumption 2. Let µ0(w) = E[Yi(0) |Wi = w] and recall pk(w) = E[Xik |Wi = w]. Either

pk ∈ G (12)

for all k, or
µ0 ∈ G. (13)

The first condition requires the covariate adjustment to be flexible enough to capture each
treatment’s propensity score. For example, with a linear specification for g, eq. (12) requires
the propensity scores to be linear in Wi (cf. eq. (30) in Angrist & Krueger, 1999). This
condition holds trivially in Example 1, since Wi is a vector of indicators for groups within
which Xi is randomly assigned. When this condition holds, the projection of the treatment
onto the covariates coincides with the vector of propensity scores, and the projection residuals
coincide with the conditionally demeaned treatment vector X̃i = Xi − p(Wi).
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In Example 2, with Xi being a deterministic function of unit and time indices and g(Wi)

including unit and time fixed effects, eq. (12) fails because the propensity scores are binary—
they cannot be captured by a linear combination of the TWFEs. However, eq. (13) is satisfied
by a parallel trends assumption: that the average untreated potential outcomes Yi(0) are linear
in the unit and time effects. We elaborate on this setup in Appendix B.11

Under either condition in Assumption 2, the specification of controls is flexible enough to
avoid OVB. To see this formally, suppose all treatment effects are constant: τik = τk for all
k. This restriction lets us write Yi = Yi(0) +X ′

iτ , where τ is a vector collecting the constant
effects. The only source of bias when regressing Yi on Xi and controls is then the unobserved
variation in the untreated potential outcomes Yi(0). But it follows from the definition of β in
eq. (10) that there is no such OVB when Assumption 2 holds; the coefficient vector identifies
the constant effects:

β = E[X̃iX̃
′
i]
−1E[X̃iYi] = E[X̃iX̃

′
i]
−1(E[X̃iYi(0)] + E[X̃iX̃

′
i]τ)

= E[X̃iX̃
′
i]
−1E[X̃iE[Yi(0) |Wi]]︸ ︷︷ ︸

=0

+τ = τ.

Here the first line uses the fact that E[X̃iX
′
i] = E[X̃iX̃

′
i] because X̃i is a vector of projection

residuals, and the second line uses the law of iterated expectations and Assumption 1. Under
eq. (12), E[X̃i | Wi] = 0, so that the term in braces is zero by another application of the law
of iterated expectations: E[X̃iE[Yi(0) | Wi]] = E[E[X̃i | Wi]E[Yi(0) | Wi]] = 0. It is likewise
zero under eq. (13) since X̃i is by definition of projection orthogonal to any function in G such
that E[X̃iE[Yi(0) | Wi]] = E[X̃iµ0(Wi)] = 0. Hence, OVB is avoided in the constant-effects
case so long as either the propensity scores or the untreated potential outcomes are spanned by
the control specification. Versions of this robustness property have been previously observed
in, for instance, Robins et al. (1992).

When treatment effects are heterogeneous but Xi contains a single treatment indicator,
β identifies a weighted average of the conditional effects τ(Wi). Specifically, since by the
previous argument we still have E[X̃iYi(0)] = 0, it follows from eq. (10) that

β =
E[X̃iXiτi]

E[X̃2
i ]

= E[λ11(Wi)τ(Wi)], with λ11(Wi) =
E[X̃iXi |Wi]

E[X̃iXi]
, (14)

where the second equality uses iterated expectations and the identity E[X̃2
i ] = E[X̃iXi].

Under eq. (12), E[X̃iXi | Wi] = E[X̃2
i | Wi] = var(Xi | Wi), so the weights further simplify

11Identification based on eq. (12) can be seen as “design-based” in that it only restricts the treatment assign-
ment process. Identification based on eq. (13) can be seen as “model-based” in that it makes no assumptions
on the treatment assignment process but specifies a model for the unobserved untreated potential outcomes.
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to λ11(Wi) = var(Xi|Wi)
E[var(Xi|Wi)]

≥ 0. This extends the Angrist (1998) result to a general control
specification; versions of this extension appear in, for instance, Angrist and Krueger (1999),
Angrist and Pischke (2009, Chapter 3.3), and Aronow and Samii (2016).

This result provides a robustness rationale for estimating the effect of a single as-good-as-
randomly assigned treatment with a partially linear model (8): so long as the specification
of G is rich enough to make eq. (12) hold, β will identify a convex average of heterogeneous
treatment effects. In Section 4 we will derive another rationale for targeting β in this model,
showing that the weights λ11(Wi) minimize the semiparametric efficiency bound (conditional
on the controls) for estimating some weighted-average treatment effect.

Our first proposition shows that with multiple treatments, the interpretation of β becomes
more complicated because of contamination bias:

Proposition 1. Under Assumptions 1 and 2, the treatment coefficients in (8) identify

βk = E[λkk(Wi)τk(Wi)] +
∑
ℓ̸=k

E[λkℓ(Wi)τℓ(Wi)], (15)

where, recalling that E∗[Xik | Xi,−k,Wi] gives the projection of Xik onto the space {X ′
i,−kδ̃ +

g̃(Wi) : δ̃ ∈ RK−1, g̃ ∈ G},

λkk(Wi) =
E[

≈
XikXik |Wi]

E[
≈
X2

ik]
=
pk(Wi)(1− E∗[Xik | Xi,−k = 0,Wi])

E[
≈
X2

ik]
, and

λkℓ(Wi) =
E[

≈
XikXiℓ |Wi]

E[
≈
X2

ik]
= −pℓ(Wi)E

∗[Xik | Xiℓ = 1,Wi]

E[
≈
X2

ik]

with E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0. Furthermore, if eq. (12) holds, λkk(Wi) ≥ 0.

Proposition 1 shows that the coefficient on Xik in eq. (8) is a sum of two terms. The first
term is a weighted average of conditional ATEs τk(Wi), with own treatment weights λkk(Wi)

that average to one—generalizing the characterization of the single-treatment case, eq. (14).
The expression for λkk implies that these weights are convex if the implicit linear probability
model used to compute

≈
Xik fits probabilities that lie below one, E∗[Xik | Xi,−k = 0,Wi] ≤ 1.

The second term is a weighted average of treatment effects for other treatments τℓ(Wi), with
contamination weights λkℓ(Wi) that average to zero. Because the contamination weights
are zero on average, they must be negative for some values of the controls unless they are
all identically zero.12 This is the case when the implicit linear probability model correctly
predicts that Xik = 0 if Xiℓ = 1.

12Proposition 1 complements an algebraic result in Chattopadhyay and Zubizarreta (2021, Section 7.1),
which shows that the regression estimator of βk can be written in terms of weighted sample averages of
outcomes among units in different treatment arms (regardless of whether Assumptions 1 and 2 hold). In
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Hence, if the linear probability model is correctly specified, i.e. E[Xik | Xi,−k,Wi] =

X ′
i,−kα + gk(Wi) for some vector α and gk ∈ G, the contamination weights λkℓ(Wi) are zero

and the own treatment weights λkk(Wi) are positive. This is the analog of condition (12)
if we interpret Xik as a binary treatment of interest and X ′

i,−kα + gk(Wi) as a specification
for the controls. In other words, the assignment of treatment k must be additively separable
between Xi,−k and Wi. However, with mutually exclusive treatments, this won’t be the case
unless treatment assignment is unconditionally random. In particular, since Xik must equal
zero if the unit is assigned to one of the other treatments regardless of the value of Wi, under
correct specification it must be the case that αℓ = −gk(Wi) for all elements αℓ of α. This in
turn implies that the assignment of treatment k doesn’t depend on Wi, which is impossible
unless the propensity score pk(Wi) is constant.

Thus, misspecification in the linear probability model will generally yield nonsensical fitted
probabilities E∗[Xik | Xiℓ = 1,Wi] ̸= 0 that generate non-zero contamination weights λkℓ(Wi).
Furthermore, if the misspecification also yields fitted probabilities E∗[Xik | Xi,−k = 0,Wi] > 1,
we will have negative own treatment weights. The last part of Proposition 1 shows that such
nonsensible predictions are ruled out if eq. (12) holds.

We make four further remarks on our general characterization of contamination bias:

Remark 1. Since the contamination weights are mean zero, we may write the contamina-
tion bias term as E[λkℓ(Wi)τℓ(Wi)] = cov(λkℓ(Wi), τℓ(Wi)). Thus, the treatment coefficient
βk does not suffer from contamination bias if the contamination weights λkℓ(Wi) are un-
correlated with the conditional ATEs τℓ(Wi). This is trivially true if the other treatments
are homogeneous, i.e. when τℓ(Wi) = τℓ. More generally, contamination bias will be small
if the contamination weight exhibits weak covariance with the conditional ATEs. Since
cov(λkℓ(Wi), τℓ(Wi)) = cor(λkℓ(Wi), τℓ(Wi)) sd(λkℓ(Wi)) sd(τℓ(Wi)), this is the case when (i)
the factors influencing treatment effect heterogeneity are largely unrelated to the factors in-
fluencing the treatment assignment process in the sense that cor(λkℓ(Wi), τℓ(Wi)) is close to
zero, (ii) the contamination weights display limited variability, and/or (iii) treatment effect
heterogeneity in the other treatments ℓ ̸= k is limited.

Remark 2. Since the weights in eq. (15) are functions of the variances E[
≈
X2

ik] and covariances
E[

≈
XikXiℓ] and E[

≈
XikXik], they are identified and can be used to further characterize each

βk coefficient. For example, the contamination bias term can be bounded by the identified
contamination weights λkℓ(Wi) and bounds on the heterogeneity in conditional ATEs τℓ(Wi).

Remark 3. The results in Proposition 1 are stated for the case when Xi are mutually exclusive

contrast, our analysis interprets regression estimands in terms of weighted averages of conditional ATEs under
a broad class of identifying assumptions. In a finite-population setting, Abadie et al. (2020) show that β
identifies matrix-weighted averages of individual treatment effect vectors τi; however, they do not discuss the
interpretation of the estimand.
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treatment indicators. In Appendix A.1 we relax this assumption to allow for combinations
of non-mutually exclusive treatments (either discrete or continuous). In this case, the own-
treatment weights λkk(Wi) may be negative even if eq. (12) holds.

Remark 4. While we derived Proposition 1 in the context of a causal model, an analogous
result follows for descriptive regressions that do not assume potential outcomes or impose
Assumption 1. Consider, specifically, the goal of estimating an average of conditional group
contrasts E[Yi | Di = k,Wi = w]−E[Yi | Di = 0,Wi = w] with a partially linear model eq. (8)
and replace condition (13) with an assumption that E[Yi | Di = 0,Wi = w] ∈ G. The steps
that lead to Proposition 1 then show that such regressions also generally suffer from con-
tamination bias: the coefficient on a given group indicator averages the conditional contrasts
across all other groups, with non-convex weights. Furthermore, the weights on own-group con-
ditional contrasts are not necessarily positive. These sorts of conditional contrast comparisons
are therefore not generally robust to misspecification of the conditional mean, E[Yi | Di,Wi].

3.2 Implications

Proposition 1 shows that treatment effect heterogeneity can induce two conceptually distinct
issues in flexible regression estimates of treatment effects. First, with either single or mul-
tiple treatments, there is a negative weighting of a treatment’s own effects when projecting
the treatment indicator onto other treatment indicators and covariates yields fitted values
exceeding one, i.e. when E∗[Xik | Xi,−k = 0,Wi] > 1. This issue is relevant in various DiD re-
gressions and related approaches which rely on a model of untreated potential outcomes that
ensures eq. (13) holds (e.g. parallel trends assumptions) but which potentially misspecify the
assignment model in eq. (12). Although the recent DiD literature focuses on TWFE regres-
sions, Proposition 1 shows such negative weighing can arise more generally—such as when re-
searchers allow for linear trends, interacted fixed effects, or other extensions of the basic paral-
lel trends model. None of these alternative specifications for g are in general flexible enough to
capture the degenerate propensity scores and hence ensure that E∗[Xik | Xi,−k = 0,Wi] ≤ 1.

Second, in the multiple treatment case, there is a potential for contamination bias from
other treatment effects—regardless of which condition in Assumption 2 holds. This form of
bias is relevant whenever one uses an additive covariate adjustment, no matter how flexibly
the covariates are specified. Versions of this problem have been noted in, for example, the
Sun and Abraham (2021) analysis of DiD regressions with treatment leads and lags or the
Hull (2018b) analysis of mover regressions (see Appendix B).13 Proposition 1 shows such

13The negative weights issue raised in de Chaisemartin and D’Haultfœuille (2020) (when K = 1), and the
related issue that own-treatment weights may be negative in Sun and Abraham (2021) and de Chaisemartin
and D’Haultfœuille (2022) (when K > 1), arise because the treatment probability is not linear in the unit and
time effects. If eq. (12) holds with K = 1, Proposition 1 shows β estimates a convex combination of treatment
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contamination bias arises much more broadly, however.
The characterization in Proposition 1 also relates to concerns in interpreting multiple-

treatment IV estimates with heterogeneous effects (Behaghel et al., 2013; Kirkeboen et al.,
2016; Kline & Walters, 2016; Hull, 2018a; Lee & Salanié, 2018; Bhuller & Sigstad, 2022). This
connection comes from viewing eq. (8) as the second stage of an IV model estimated by a con-
trol function approach; in the linear IV case, for example, g(Wi) can be interpreted as giving
the residuals from a first-stage regression of Xi on a vector of valid instruments Zi. In the
single-treatment case, the resulting β coefficient has an interpretation of a weighted average
of conditional local average treatment effects under the appropriate first-stage monotonicity
condition (Imbens & Angrist, 1994). But as in Proposition 1 this interpretation fails to gen-
eralize when Xi includes multiple mutually-exclusive treatment indicators: each βk combines
the local effects of treatment k with a non-convex average of the effects of other treatments.

Finally, Proposition 1 has implications for single-treatment IV estimation with multiple
instruments and flexible controls if the first stage has the form of eq. (8), where now Yi is
interpreted as the treatment and Xi gives the vector of instruments. Proposition 1 shows that
the first-stage coefficients on the instruments βk will not generally be convex weighted average
of the true first-stage effects τik. Because of this non-convexity, the regression specification
may fail to satisfy the effective monotonicity condition even when τik is always positive: the
cross-instrument contamination of causal effects may cause monotonicity violations, even when
specifications with individual instruments do not. This issue is distinct from previous concerns
over monotonicity failures in multiple-instrument designs (Mueller-Smith, 2015; Frandsen et
al., 2019; Norris, 2019; Mogstad et al., 2021), which are generally also present in such just-
identified specifications. It is also distinct from concerns about insufficient flexibility in the
control specification when monotonicity holds unconditionally (Blandhol et al., 2022).

This new monotonicity concern may be especially important in “examiner” IV designs,
which exploit the conditional random assignment to multiple decision-makers. Many studies
leverage such variation by computing average examiner decision rates, often with a leave-one-
out correction, and use this “leniency” measure as a single instrument with linear controls.
These IV estimators can be thought of as implementing versions of a jackknife IV estimator
(Angrist et al., 1999), based on a first stage that uses examiner indicators as instruments,
similar to eq. (8). Proposition 1 thus raises a new concern with these IV analyses when
controls (such as time fixed effects) are needed to ensure ignorable treatment assignment.

effects. This covers the setting considered in Theorem 1(iv) in Athey and Imbens (2022). In their Comment
2, Athey and Imbens (2022) say that “the sum of the weights [used in Theorem 1(iv)] is one, although some
of the weights may be negative”. Proposition 1 shows these weights are, in fact, non-negative.
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4 Solutions

We now discuss three solutions to the contamination bias problem raised by Proposition 1,
each targeting a distinct causal parameter. First, in Section 4.1, we discuss estimation of
unweighted ATEs. The other two solutions, discussed in Section 4.2, estimate weighted av-
erages of individual treatment effects using an easiest-to-estimate weighting (EW) scheme in
that the weights minimize the semiparametric efficiency bound for estimating weighted ATEs
under homoskedasticity. If the weights are allowed to vary across treatments, the EW scheme
for each treatment k is recovered by estimating the partially linear model in eq. (8) but in a
sample restricted to individuals in the control group and to those receiving treatment k. If
the weights are constrained to be common across treatments, this leads to a weighted regres-
sion estimator. In Section 4.3, we outline our proposed guidance to researchers in measuring
contamination bias and applying these solutions.

Implementing the first solution requires strong overlap (i.e. that treatment propensity
scores are bounded away from zero and one) while the other two solutions are not well-defined
if the propensity score is fully degenerate. Solutions allowing for degenerate propensity scores
require either targeting subpopulations of treated observations or adding substantive restric-
tions on conditional means of treated potential outcomes (beyond eq. (13), which only restricts
untreated potential outcomes). We refer readers to de Chaisemartin and D’Haultfœuille
(2022), Sun and Abraham (2021), Callaway and Sant’Anna (2021), Borusyak et al. (2022),
and Wooldridge (2021) for such solutions in the context of DiD regressions.

4.1 Estimating Average Treatment Effects

Many estimators exist for the ATE of binary treatments—see Imbens and Wooldridge (2009)
and Abadie and Cattaneo (2018) for reviews. Several of these approaches extend naturally
to multiple treatments: including matching on covariates or the propensity score, inverse
propensity score weighting, interacted regression, or doubly-robust methods (see, among oth-
ers, Cattaneo (2010), Chernozhukov et al. (2021), and Graham and Pinto (2022)). Here we
summarize the last two approaches.

For the interacted regression solution, we adapt the implementation for the binary treat-
ment case discussed in Imbens and Wooldridge (2009, Section 5.3) to multiple treatments.
Specifically, consider the specification:

Yi = X ′
iβ + q0(Wi) +

K∑
k=1

Xik (qk(Wi)− E[qk(Wi)]) + U̇i, (16)

where qk ∈ G, k = 0, . . . ,K and we continue to define β and the functions qk as minimizers of
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E[U̇2
i ]. When G consists of linear functions, eq. (16) specifies a linear regression of Yi on Xi,

Wi, a constant, and the interactions between each treatment indicator Xik and the demeaned
control vector Wi − E[Wi]. Define µk(w) = E[Yi(k) | Wi = w] for k = 0, . . . ,K, so that
τk(w) = µk(w) − µ0(w). If Assumption 1 holds and G is furthermore rich enough to ensure
µk ∈ G for k = 0, . . . ,K then β = τ . Moreover, qk(w) = τk(w) for k = 1, . . . ,K, such that
the regression identifies both the unconditional and conditional ATEs.

The added interactions in eq. (16) ensure that each treatment coefficient βk is determined
only by the outcomes in treatment arms with Di = 0 and Di = k, avoiding the contamination
bias in Proposition 1. Demeaning the qk(Wi) in the interactions ensures they are appropriately
centered to interpret the coefficients on the uninteracted Xik as ATEs.

Estimation of eq. (16) is conceptually straightforward for parametric qk. In particular, if
G consists of linear functions, one simply estimates

Yi = α0 +
K∑
k=1

Xikτk +W ′
iαW,0 +

K∑
k=1

Xik(Wi −W )′γW,k + U̇i. (17)

by ordinary least squares (OLS), where W = 1
N

∑
iWi is the sample average of the covariate

vector. More generally, to increase the plausibility of the key assumption that µk ∈ G, one
may constrain G only by nonparametric smoothness assumptions. Given a sequence of basis
functions {bj(Wi)}∞j=1, such as polynomials or splines, one then approximates qk with a linear
combination of the first J terms, with J increasing with the sample size, thus tailoring the
model complexity to data availability. Given a choice of J , estimation and inference can
proceed exactly as in the parametric case; the only difference is that the baseline covariates
Wi in eq. (17) are replaced by the basis vector (b1(Wi), . . . , bJ(Wi))

′ and W is replaced by the
sample average of this expansion. This estimator has been studied in the binary treatment
case by Chen et al. (2008) and Imbens et al. (2007), with the latter providing a detailed
analysis of how to choose J and the former showing that this sieve estimator achieves the
semiparametric efficiency bound under strong overlap: it is impossible to construct another
regular estimator of the ATE with smaller asymptotic variance.

An attractive alternative approach combines the interacted regression with inverse propen-
sity score weighting. Instead of using OLS to estimate eq. (16) one uses weighted least squares,
weighting observations by the inverse of some estimate p̂Di(Wi) of the propensity score (see,
e.g., Robins et al. (1994), Wooldridge (2007), and Słoczyński and Wooldridge (2018)). An
advantage of this approach is that it is doubly-robust: the estimator is consistent so long
as either the propensity score estimator is consistent or the outcome model is correct (i.e.
µk ∈ G). A recent literature shows how the double-robustness property, when combined with
cross-fitting, reduces the sensitivity of the ATE estimate to overfitting or regularization bias
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in estimating the nuisance functions pk and µk. Cross-fitting also allows for using more flexi-
ble methods to approximate pk and µk, including modern machine learning methods (see, e.g.
Chernozhukov et al., 2018, 2022, 2021).

Either approach should work reliably in stratified RCTs and other settings with strong
overlap. But under weak overlap, when propensity scores are not bounded away from zero
and one, all of these ATE estimators may be imprecise and have poor finite-sample behavior.
This is not a shortcoming of the specific estimator; indeed, Khan and Tamer (2010) show that
identification of the ATE is irregular under weak overlap and that it is not possible to estimate
it at a

√
N -rate. When overlap fails entirely, with some propensity scores obtaining values of

zero or one, the ATE is no longer point-identified. These results formalize the intuition that
it is difficult or impossible to reliably estimate the counterfactual outcomes for units with
extreme propensity scores.14 Such extreme propensity scores are common in observational
settings. The solutions we discuss next downweight these difficult-to-estimate counterfactuals
to address this practical challenge.

4.2 Easiest-to-Estimate Averages of Treatment Effects

Suppose in a sample of observations i = 1, . . . , N we wish to estimate a weighted average
of conditional potential outcome contrasts

∑N
i=1 λ(Wi)

∑K
k=0 ckµk(Wi)/

∑N
i=1 λ(Wi), where

µk(Wi) = E[Yi(k) |Wi], c is a (K+1)-dimensional contrast vector with elements ck, and λ(Wi)

is some weighting scheme.15 We focus on two specifications for the contrast vector, leading
to two alternatives to estimating the ATE using eq. (16). First, for separately estimating the
effect of each treatment k, we set ck = 1, c0 = −1 and set the remaining entries of c to 0.
The contrast of interest then becomes

∑N
i=1 λ(Wi)τk(Wi)/

∑N
i=1 λ(Wi), the weighted ATE of

treatment k across different strata. Second, we specify c so as to allow us to simultaneously
contrast the effects of all K treatments—we discuss this further below. For each contract
vector c, we find the easiest-to-estimate weighting (EW) scheme λ(Wi) that leads to the
smallest possible standard errors under homoskedasticity.

This optimization problem has four motivations. The first is a robustness motivation:
a researcher would like to estimate a given contrast as preceisely as possible, at least un-
der the benchmark of constant treatment effects, while being robust to the possibility that
the effects are heterogeneous. While the optimization problem does not impose convexity
it turns out that the EW scheme is convex. Hence, the resulting estimand retains an inter-

14One approach to limited overlap is trimming: i.e., dropping observations with extreme propensity scores
(Crump et al., 2006, 2009; Yang et al., 2016). As with the estimators we derive next, trimming estimators
shift the estimand from ATE to easier-to-estimate weighted averages of conditional ATEs.

15In a slight abuse of notation relative to Section 3, the weights λ here are not required to average to one.
Instead, we scale the estimand by the sum of the weights,

∑N
i=1 λ(Wi).
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pretation of identifying a convex average of conditional contrasts when treatment effects are
heterogeneous while avoiding the contamination bias displayed by the regression estimator per
Proposition 1. This robustness property presumably underlies the popularity of regression as
a tool for estimating the effect of a binary treatment: the regression estimator is efficient
under homoskedasticity and constant treatment effects while, by the Angrist (1998) result,
retaining a causal interpretation under heterogeneous effects.16

Second, the EW scheme can be seen as giving a bound on the information available
in the data: if the scheme nonetheless yields overly large standard errors, inference on other
treatment effects (such as the unweighted ATE) as least as uninformative. Computing the EW
standard errors thus reveals whether informative conclusions (regardless of how one specifies
the treatment effect of interest) are only possible under additional assumptions or with the aid
of additional data. If the EW scheme yields small standard errors even though the standard
errors for, say, the unweighted ATE are large, one can conclude that the data is informative
about some treatment effects—even if it is not informative about the unweighted average.

In fact, our solution below shows that in the binary treatment case the EW scheme is
exactly the same as the weights used by regression. To illustrate the second justification in
this special case, recall that the treatment weights are proportional to the conditional variance
of treatment, var(Di |Wi) = p1(Wi)(1− p1(Wi)), which tend to zero as p1(Wi) tends to zero
or one. Regression thus downweights observations with extreme propensity scores where the
estimation of counterfactual outcomes is difficult, avoiding the poor finite-sample behavior of
ATE estimators under weak overlap and allowing regression to be informative even in cases
when it is not possible to precisely estimate the unweighted ATE. More generally, since under
binary treatment regression gives the EW scheme, it establishes the extent to which internally
valid and informative inference for any causal effect are possible with the data at hand.

Third, the EW scheme can be viewed as offering an intermediate point along a partic-
ular robustness-precision “possibility frontier”. The ATE estimator based on the interacted
specification in eq. (16) lies on one end of this frontier, being the most robust to treatment
effect heterogeneity (i.e. retaining a clear interpretation regardless of the form of τ(w) or how
it relates to the propensity scores). But this robustness comes at the potential cost of im-
precision and non-standard inference under weak overlap. The regression estimator based on
eq. (8) lies on the other end of the frontier: it is likely to be precise even when overlap is weak
(and is efficient under homoskedasticity if the partly linear model in eq. (8) is correct, such
that treatment effects are constant). But this precision comes at the cost of contamination

16There are at least two ways to motivate the interest in convex weights. First, λ(Wi) ≥ 0 ensures the esti-
mand captures average effects for some well-defined (and characterizable) subpopulation. Second, it prevents
what Small et al. (2017) call a sign-reversal: that if τk(w) has the same sign for all w (+, 0 or −), then the
estimand will also have this sign. Blandhol et al. (2022) call such estimands “weakly causal”.
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bias under heterogeneous treatment effects. The EW scheme lies in between these extremes,
purging contamination bias and retaining good performance under weak overlap by giving up
explicit control over the treatment effect weighting, letting it be data-determined.17

Finally, while the derivation of the EW scheme is motivated by statistical precision con-
cerns, the resulting estimand can be seen as identifying the impact of a policy that manip-
ulates the treatment via a particular incremental propensity score intervention. We discuss
this interpretation in Remark 6 below.

We derive the EW scheme in two steps. First, we establish a precision benchmark—a
semiparametric efficiency bound—for estimation of a given weighted average of treatment
effects under the idealized scenario that the propensity score is known. Second, we determine
which weights λ minimize the semiparametric efficiency bound. We discuss estimation when
the propensity score is not known in Section 4.3.

The following proposition establishes the first step of our derivation:

Proposition 2. Suppose eq. (11) holds in an i.i.d. sample of size N , with known non-
degenerate propensity scores pk(Wi). Let σ2k(Wi) = var(Yi(k) | Wi). Consider the problem
of estimating the weighted average of contrasts

θλ,c =
1∑N

i=1 λ(Wi)

N∑
i=1

λ(Wi)

K∑
k=0

ckµk(Wi),

where the weighting function λ and contrast vector c are both known. Suppose the weighting
function satisfies E[λ(Wi)] ̸= 0, and that the second moments of λ(Wi) and µ(Wi) are bounded.
Then, conditional on the controls W1, . . . ,WN , the semiparametric efficiency bound is almost-
surely given by

Vλ,c =
1

E[λ(Wi)]2
E

[
K∑
k=0

λ(Wi)
2c2kσ

2
k(Wi)

pk(Wi)

]
. (18)

As formalized in the Appendix A.2 proof, Vλ,c establishes the lower bound on the asymptotic
variance of any regular estimator of θλ,c under the idealized case of known propensity scores.18

To establish the second step, we minimize eq. (18) over λ. Simple algebra shows that the
17There are other approaches to resolving the robustness-precision tradeoff, such as seeking precise estimates

subject to the weights λ remaining “close” to one, or placing some restrictions on the form of effect heterogeneity,
in contrast to leaving it completely unrestricted as we do here (see Mogstad et al. (2018) for an example of
this approach in an IV setting). We leave these alternatives to future research.

18The efficiency bound for the population analog θ∗λ,c = E[λ(Wi)
∑K

k=0 ckµk(Wi)]/E[λ(Wi)] has an addi-
tional term, E[λ(Wi)

2(
∑K

k=0 ckµk(Wi)−θ∗λ,c)
2]/E[λ(Wi)]

2, reflecting the variability of the conditional average
contrast. The variance-minimizing weights for θ∗λ,c thus depend on the nature of treatment effect heterogene-
ity. By focusing on θλ,c, we avoid this term, which allows us give the characterization in eq. (19) without any
assumptions about heterogeneity in treatment effects.

21



EW scheme is (up to an arbitrary constant) given by

λ∗c(Wi) =

(
K∑
k=0

c2kσ
2
k(Wi)

pk(Wi)

)−1

. (19)

Note that this weighting scheme delivers convex weights, λ∗c ≥ 0, even though convexity was
not imposed in the optimization. Hence, there is no cost in precision if we restrict attention
to convex weighted averages of conditional ATEs.

When the contrast vector is selected to estimate the weighted average effect of a particular
treatment k, a corollary to Proposition 2 is that regression weights are the easiest-to-estimate:

Corollary 1. For some k ≥ 1, let ck be a vector with elements ckj = 1 if j = k, ckj = −1

if j = 0, and ckj = 0 otherwise. Suppose that the conditional variance of relevant potential
outcomes is homoskedastic: σ2k(Wi) = σ20(Wi) = σ2. Then the variance-minimizing weighting
scheme is given by λ∗

ck
= λk, where

λk(Wi) =
p0(Wi)pk(Wi)

p0(Wi) + pk(Wi)
. (20)

Per eq. (14), the weighting λk coincides with the weighting of conditional ATEs from the
partially linear model (8) when it is fit only on observations with Di ∈ {0, k}, provided
pk/(pk + p0) ∈ G.19 When the treatment Di is binary, this simply amounts to running a
regression on the binary treatment indicator with an additive covariate adjustment.

Corollary 1 thus gives a precision justification for estimating the effect of any given treat-
ment k by a partially linear regression with an additive covariate adjustment in the subsample
with Di ∈ {0, k} under a homoskedasticity benchmark, complementing the robustness moti-
vation discussed earlier.20 To estimate the effects of all treatments one can run K such
regressions, restricting the sample to one treatment arm and the control group.

This precision justification builds on earlier results in Crump et al. (2006, Corollary 5.2)
(a working paper version of Crump et al., 2009) and Li et al. (2018, Corollary 1) who show,
in the context of a binary treatment, that the weighting p1(Wi)(1 − p1(Wi)) minimizes the
asymptotic variance of a particular class of inverse propensity score weighted estimators. Our
Corollary 1 extends the property to all regular estimators, as well as to multiple treatments.

Remark 5. The one-treatment-at-a-time regression can also be motivated as a direct solution
to contamination bias in the partially linear regression in eq. (8). In particular, as discussed in

19This follows since the propensity score in the subsample is given by Pr(Di = k | Wi, Di ∈ {0, k}) =
pk(Wi)

p0(Wi)+pk(Wi)
, so that λk(Wi) in eq. (20) equals the conditional variance of the treatment indicator times the

probability of being in the subsample.
20As usual, homoskedasticity is a tractable baseline: the arguments in favor of OLS following Corollary 1

can be extended to favor a (feasible) weighted least squares regression when σ2(Wi) is consistently estimable.
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Section 3.1, contamination bias arises because the implicit linear probability model E∗[Xik |
Xi,−k,Wi] incorrectly imposes additive separability between Xi,−k and Wi. To solve this
issue, one can include interactions between the controls and Xi,−k. This is analogous to the
interacted regression in eq. (16), except we exclude the interaction Xik(qk(Wi)− E[qk(Wi)]).
Running this regression is equivalent to the one-treatment-at-a-time regression.21

Remark 6. The population analog of the estimand implied by the weighting in Corollary 1,
E[λk(Wi)τk(Wi)/E[λk(Wi)], also identifies the effect of a particular marginal policy inter-
vention. Consider the effects of a class of policies indexed by a scalar δ that restrict treat-
ments to {0, k} by increasing the propensity score of treatment k to pδk(Wi) and setting
pδ0(Wi) = 1− pδk(Wi).22 Then the marginal effect of the increasing the policy intensity δ per
unit treated at δ = 0 is given by E[∂pδk(Wi)/∂δ · τ(Wi)]/E[∂pδk(Wi)/∂δ] (see Zhou & Opacic,
2022, for derivation and discussion). Thus, the weights λk(Wi) =

p0(Wi)pk(Wi)
p0(Wi)+pk(Wi)

identify the
marginal policy effect if they correspond to the derivative ∂pδk(Wi)/∂δ. This is approximately
the case for policies under which individuals with more extreme propensity scores are less
likely to exhibit a behavioral response, which as argued in Kennedy (2019) is the case for
many policies. If the treatment is binary to begin with, Zhou and Opacic (2022) show that
the approximation is exact for policies that increase the log odds of a treatment by a constant
δ—such as by increasing the intercept in a logit model for treatment.

A shortcoming of the EW scheme in Corollary 1 is that it is treatment-specific, precluding
comparisons of the weighted-average effects across treatments.23 This issue is especially salient
when the control group is arbitrarily chosen, such as in teacher VAM regressions which omit
an arbitrary teacher from estimation and seek causal comparisons across all teachers.

We thus turn to the question of how Proposition 2 can be used to select the easiest-to-
estimate weighting scheme which allows for simultaneous comparisons across all treatment
arms. Suppose that the contrast of interest is drawn at random from a given marginal treat-
ment distribution Pr(Di = k) = πk, so that cj = 1 with probability πj(1− πj)/(1−

∑K
k=0 π

2
k)

21To see this, observe that the coefficient on Xik is unchanged if we don’t demean the controls and if we
replace q0(Wi) with (Xik +Xi0)q0(Wi). That is, if we regress Yi onto Xik, (Xik +Xi0)q0(Wi), Xi,−k, and the
interactions Xiℓqℓ(Wi) for ℓ ̸= 0. The regressor matrix is block-diagonal: (Xik, (Xik +Xi0)q0(Wi)) is non-zero
iff Di ∈ {0, k} and the remaining regressors are nonzero iff Di ̸∈ {0, k}. Hence, the coefficient on Xik can
equivalently be computed by regressing Yi onto Xik and q0(Wi) in the sample with Di ∈ {0, k}.

22With multiple treatments, policy relevance of any contrast only involving two treatments will generally
require the policy to restrict the number of treatments to preclude flows in and out of multiple treatment
states. For instance, the ATE gives the effect of comparing two policies: one makes only treatment k available,
while the other makes only treatment 0 available.

23Formally, for treatments 1 and 2, we estimate the weighted averages
∑

i λ
1(Wi)τ1(Wi)/

∑
i λ

1(Wi) and∑
i λ

2(Wi)τ2(Wi)/
∑

i λ
2(Wi). Because the weights λ1 and λ2 differ, the difference between these estimands

cannot generally be written as a convex combination of conditional treatment effects τ1(Wi) − τ2(Wi). This
critique also applies to the own-treatment weights in Proposition 1. Thus even without contamination bias
one may find the implicit multiple-treatment regression weighting deficient.
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and cj = −1 with the same probability.24 Let Fπ denote this distribution over the (now
random) contrasts. If the researcher wishes to report an accurate contrast estimate but needs
to commit to a weighting scheme before knowing the contrast of interest, it is optimal to
minimize the expected variance

∫
Vλ,cdFπ(c) =

1

E[λ(Wi)]2(1−
∑K

k=0 π
2
k)

K∑
k=0

E

[
λ(Wi)

22πk(1− πk)σ
2
k(Wi)

pk(Wi)

]
.

Minimizing this expression over λ is equivalent to minimizing eq. (18) with c2k = 2πk(1− πk),
which yields eq. (19) with this contrast specification as the optimal weighting. Thus, the opti-

mal weights are proportional to
(∑K

k=0
πk(1−πk)σ

2
k(Wi)

pk(Wi)

)−1
. Specializing to the homoskedastic

case leads to the following result:

Corollary 2. Let Fπ denote the distribution over possible contrast vectors such that PFπ(ck =

1) = PFπ(ck = −1) = πj(1 − πj)/(1 −
∑K

k=0 π
2
k). Suppose that σ2k(Wi) = σ2 for all k. Then

the weighting scheme minimizing the average variance bound
∫
Vλ,cdFπ(c) is given by:

λCW(Wi) =

(
K∑
k=0

πk(1− πk)

pk(Wi)

)−1

.

The easiest-to-estimate common weighting (CW) scheme λCW generalizes the intuition behind
the single binary treatment (Corollary 1), placing higher weight on covariate strata where the
treatments are evenly distributed, and putting less weight on strata with limited overlap.
When the treatment is binary, K = 1, the πk’s do not matter and the CW scheme reduces
to that in Corollary 1: λCW(Wi) = λ1(Wi) = λ0(Wi) = p1(Wi)p0(Wi). With multiple
treatments, however, the weights λCW remain the same for every treatment—allowing for
simultaneous comparisons across all treatment pairs (k, ℓ).

There are two natural choices for the marginal treatment probabilities π. First, if one
is equally interested in all contrasts, one can set πk = 1/(K + 1). This uniform probability
scheme was previously proposed by Li and Li (2019); our characterization in terms of optimiz-
ing a semiparametric efficiency bound is, to our knowledge, novel. Second, if more common
treatments are of greater interest, we may set πk to equal to the empirical treatment probabil-
ities N−1

∑
iXik. Treatment arms that have low prevalence would then have little impact on

the weighting. This weighting targets precise estimation of contrasts involving more common
treatments at the expense of contrasts involving less common treatments. We use this choice
in our empirical applications in Section 5. In Section 4.3 below, we show how to implement

24Formally, we draw two treatments at random from the given marginal distribution, discarding the draw
if the two treatments are equal.
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the CW scheme λCW using a weighted regression approach.

4.3 Practical Guidance in Measuring and Avoiding Contamination Bias

A researcher interested in estimating the effects of multiple mutually exclusive treatments
with regression can use Proposition 1 to measure the extent of contamination bias in their
estimates. When the propensity score is not fully degenerate, they can further compute one
the alternative estimators discussed in the previous subsections. Here we provide practical
guidance on both procedures, which we illustrate empirically in the next section.

For simplicity, we focus on the case where g is linear and eq. (8) is estimated by OLS.
We assume Assumption 1 and both conditions in Assumption 2 hold, such that all propensity
scores pk and potential outcome conditional expectation functions µk are linearly spanned
by the controls Wi. These conditions hold, for example, when Wi contains a set of mutually
exclusive group indicators. When G is unrestricted, the recommendations in this section would
require non-parametric approximations for g analogous to those discussed in Section 4.1.

Under this setup, we can decompose the OLS estimator β̂ from the uninteracted regression

Yi = α+
K∑
k=1

Xikβk +W ′
iγ + Ui, (21)

to obtain a sample analog of the decomposition in Proposition 1. To this end, note that the
own-treatment and contamination bias weights in Proposition 1 are identified by the linear
regression of Xi on the residuals X̃i. Specifically, λkℓ(Wi) is given by the (k, ℓ)th element of
the K ×K matrix Λ(Wi) = E[X̃iX̃

′
i]
−1E[X̃iX

′
i | Wi], which can be estimated by its sample

analog Λ̂i = (Ẋ ′Ẋ)−1ẊiX
′
i, where Ẋi is the sample residual from an OLS regression of Xi

on Wi and a constant and Ẋ is a matrix collecting these sample residuals. The (k, ℓ)th
element of Λ̂i estimates the weight that observation i puts on the ℓth treatment effect in
the kth treatment coefficient. For k = ℓ this is an estimate of the own-treatment weight in
Proposition 1; for k ̸= ℓ this is an estimate of a contamination weight.

Under linearity, the kth conditional ATE may be written as τk(Wi) = γ0,k+W
′
iγW,k, where

γ0,k and γW,k are coefficients in the interacted regression specification

Yi = α0 +
K∑
k=1

Xikγ0,k +W ′
iαW,0 +

K∑
k=1

XikW
′
iγW,k + U̇i. (22)

Estimating eq. (22) by OLS yields estimates τ̂k(Wi) = γ̂0,k +W ′
i γ̂W,k. For each observation i,

we stack the set of conditional ATE estimates in a K × 1 vector τ̂(Wi).
Using the OLS normal equations, we then obtain a sample analog of the population
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decomposition in Proposition 1:

β̂ =

N∑
i=1

diag(Λ̂i)τ̂(Wi) +

N∑
i=1

[Λ̂i − diag(Λ̂i)]τ̂(Wi). (23)

The first term estimates the own-treatment effect components, E[λkk(Wi)τk(Wi)], while the
second term estimates the contamination bias components,

∑
ℓ̸=k E[λkℓ(Wi)τℓ(Wi)]. If the

contamination bias term is large for some β̂k, it suggests the estimate of the kth treatment
effect is substantially impacted by the effects of other treatments. Researchers can also com-
pare the first term of eq. (23) to other weighted averages of own-treatment effects, including
the ones discussed next, to gauge the impact of the regression weighting diag(Λ̂i).25

Further analysis of the estimated weights λ̂kℓ(w) =
∑N

i=1 1{Wi=w}Λ̂i,kℓ∑N
i=1 1{Wi=w}

can shed more light

on the regression estimates in β̂. For example, the contamination weights for ℓ ̸= k can
be plotted against the treatment effect estimates τ̂ℓ(Wi) to visually assess the sources of
contamination bias. Low bias may arise from limited treatment effect heterogeneity, small
contamination weights, or a low correlation between the two.

Implementing the alternative estimators is also straightforward under the linearity as-
sumptions. First, estimating eq. (17) by OLS yields estimates of the unweighted ATEs
τk = E[τk(Wi)]. The estimates are numerically equivalent to τ̂k = γ̂0,k + W ′γ̂W,k, where
γ̂0,k and γ̂W,k are OLS estimates of eq. (22).

The second alternative is to estimate the uninteracted regression,

Yi = α̈k +Xikβ̈k +W ′
i γ̈k + Üik (24)

among observations assigned either to treatment k or the control group, Di ∈ {0, k}, for each
k. These one-treatment-at-a-time regressions estimate the EW scheme from Corollary 1.

The third solution is to estimate the CW scheme λCW from Corollary 2. If the propensity
scores p(Wi) were known, one could run a weighted regression of Yi onto Xi and a constant,
with each observation weighted by λCW(Wi)/pDi(Wi). When the weights are unknown, we
replace λCW with its estimate

λ̂CW(Wi) =

(
K∑
k=0

πk(1− πk)

p̂k(Wi)

)−1

, (25)

25When the covariates are not saturated, it is possible that the estimated weighting function Λ̂(w) =
1
N

∑N
i=1 1{Wi = w}Λ̂i is not positive-definite for some or all w. In particular, the diagonal elements of Λ̂(w)

need not all be positive. However, it is guaranteed that the diagonal of Λ̂(w) sums to one and the non-diagonal
weights sum to zero, since

∑N
i=1 Λ̂i = Ik.
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where p̂k(Wi) = Xik − Ẋik denotes estimated propensity scores. We then regress Yi on Xi,
weighting by λ̂CW(Wi)/p̂Di(Wi). In our applications below we estimate the propensity scores
using a multinomial logit model. When the weights π are uniform, this estimator reduces to
the estimator studied in Li and Li (2019). The resulting estimator can be written as

β̂λ̂CW,k =
1∑N

i=1
λ̂CW(Wi)
p̂k(Wi)

Xik

N∑
i=1

λ̂CW(Wi)

p̂k(Wi)
XikYi −

1∑N
i=1

λ̂CW(Wi)
p̂0(Wi)

Xi0

N∑
i=1

λ̂CW(Wi)

p̂0(Wi)
Xi0Yi.

(26)
When the treatment is binary and p̂k is obtained via a linear regression, this weighted re-
gression estimator coincides with the usual (unweighted) regression estimator that regresses
Yi onto Di and Wi.26 Proposition 3 in Appendix A shows that the estimator β̂λ̂CW is
efficient in the sense that it achieves the semiparametric efficiency bound for estimating
βλCW =

∑
i λ

CW(Wi)τ(Wi)/
∑

i λ
CW(Wi).27

Remark 7. Under homoskedasticity, the second and third solutions yield estimates with
smaller asymptotic variance than the estimator of the unweighted ATE. These gains in pre-
cision are achieved by changing the estimand to a different convex average of conditional
treatment effects. In particular, covariate values w where the propensity score pk(w) is
close to zero for some k will be effectively discarded. In practice, explicitly plotting the
treatment weights λCW and λk may help to identify the types of individuals who are down-
weighted by these solutions, and to assess the variation in these weights. Plotting them
against treatment effect estimates τ̂k can help visually assess the extent to which differ-
ences in weighting schemes drive differences in between estimates. In particular, the dif-
ference between the ATE and any weighted ATE estimand of the effect of treatment k with
weights λ(Wi), normalized such that E[λ(Wi)] = 1 is given by E[λ(Wi)τk(Wi)]−E[τk(Wi)] =

E[λ(Wi)τk(Wi)] − E[λ(Wi)]E[τk(Wi)] = cov(λ(Wi), τk(Wi)). Thus, if the own treatment
weights λ display only a weak covariance with own treatment effect, the weighting will have
little effect on the estimand. This is analogous to the observation in Remark 1 that contam-
ination bias reflects the covariance between the contamination weights and treatment effects
of the other treatments.

26To see this, note that in this case λ̂(Wi) = p̂1(Wi)p̂0(Wi), so that β̂λ̂CW,1 =
∑N

i=1(1−p̂1(Wi))DiYi∑N
i=1(1−p̂1(Wi))Di

−∑N
i=1 p̂1(Wi)(1−Di)Yi∑N
i=1 p̂1(Wi)(1−Di)

=
∑N

i=1(Di−p̂1(Wi))Yi∑N
i=1(Di−p̂1(Wi))2

, where the second equality uses the least-squares normal equations∑N
i=1 Xi1 =

∑N
i=1 p̂1(Wi) and

∑
i Xi1p̂1(Wi) =

∑N
i=1 p̂1(Wi)

2.
27Similar to the discussion in Section 4.1, it may be attractive to consider a version of β̂λ̂CW,k that combines

the propensity score weighting with a regression adjustment using an estimate of µk; we leave detailed study
of such an approach to future research.
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5 Applications

5.1 Project STAR Application

We first illustrate our framework for analyzing and addressing contamination bias with data
from Project STAR, as studied in Krueger (1999). The Project STAR RCT randomized
11,600 students in 79 public Tennessee elementary schools to one of three types of classes:
regular-sized (20–25 students), small (target size 13–17 students), or regular-sized with a
teaching aide. The proportion of students randomized to the small class size and teaching
aide treatment varied over schools, due to school size and other constraints on classroom
organization. Students entering kindergarten in the 1985–1986 school year participated in
the experiment through the third grade. Other students entering a participating school in
grades 1–3 during these years were similarly randomized between the three class types. We
focus on kindergarten effects, where differential attrition and other complications with the
experimental analysis are minimal.28

Column 1 of Panel A in Table 1 reports estimates of kindergarten treatment effects in
a sample of 5,868 students initially randomized to the small class size and teaching aide
treatments. Specifically, we estimate the partially linear regression (eq. (21)) where Yi is
student i’s test score achievement at the end of kindergarten, Xi = (Xi1, Xi2) are indicators
for the initial experimental assignment to a small kindergarten class and a regular-sized class
with a teaching aide, respectively, and Wi is a vector of school fixed effects. We follow
Krueger (1999) in computing Yi as the average percentile of student i’s math, reading, and
word recognition score on the Stanford Achievement Test in the experimental sample. As in
the original analysis (Krueger, 1999, column 6 of Table V, panel A), we obtain a small class
size effect of 5.36 with a heteroskedasticity-robust standard error of 0.78 and a teaching aide
effect of 0.18 (standard error: 0.72).29

As discussed in Section 2, treatment assignment probabilities vary across the schools
indicated by the fixed effects in Wi. If treatment effects also vary across schools in a way
that covaries with the contamination weights λkℓ(Wi), we expect the estimated effect of small
class sizes to be partly contaminated by the effect of teaching aides (and vice versa). Panel B
reports the contamination bias part of the decomposition in eq. (23), which appears minimal
for both treatment arms.

28Students in regular-sized classes were randomly reassigned between classrooms with and without a teaching
aide after kindergarten, complicating the interpretation of the aide effect in later grades. The randomization
of students entering the sample after kindergarten was also complicated by the uneven availability of slots in
small and regular-sized classes (Krueger, 1999).

29Our sample and estimates are very similar to—but not exactly the same as—those in Krueger (1999). We
use heteroskedasticity-robust (non-clustered) standard errors throughout this analysis, since the randomization
of students to classrooms is at the individual leve.
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A. Treatment effect estimates

β̂ Own ATE EW CW
(1) (2) (3) (4) (5)

Small 5.357 5.202 5.561 5.295 5.577

(0.778) (0.778) (0.763) (0.775) (0.764)

[0.744] [0.743] [0.742]

Aide 0.177 0.360 0.070 0.263 0.011

(0.720) (0.714) (0.708) (0.715) (0.712)

[0.694] [0.691] [0.695]

Number of controls 77
Sample size 5,868

B. Contamination bias estimates

Worst-Case Bias

Bias Negative Positive
(1) (2) (3)

Small class size 0.155 −1.654 1.670

(0.160) (0.185) (0.187)

Teaching aide −0.183 −1.529 1.530

(0.149) (0.176) (0.177)

Notes: Panel A gives estimates of small class and teaching aide treatment effects for the
Project STAR kindergarten analysis. Col. 1 reports estimates from a partially linear model
in eq. (21), col. 2 reports the own-treatment component of the decomposition in eq. (23),
col. 3 reports the interacted regression estimates based on eq. (17), col. 4 reports estimates
based on the EW scheme using one-treatment-at-a-time regressions in eq. (24), and col 5 uses
the CW scheme based on eq. (25). Panel B gives the contamination bias component of the
decomposition in eq. (23) in col. 1, while cols. 2 and 3 reports the smallest (largest) possible
contamination bias from reordering the conditional ATEs to be as negatively (positively)
correlated with the cross-treatment weights as possible. Robust standard errors are reported
in parentheses. Robust standard errors that assume the propensity scores are known are
reported in square brackets.

Table 1: Project STAR contamination bias and treatment effect estimates
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It is useful to decompose the contamination bias further into the standard deviation of the
school-specific treatment effect τℓ(Wi), standard deviation of the contamination weights, and
their correlation, as discussed in Remark 1. Figure D.2 in Appendix D does this graphically,
plotting estimates of the school-specific treatment effects τℓ(Wi) against the contamination
weights λkℓ(Wi) for ℓ ̸= k. As can be seen from Figure D.2, the variability of school-specific
treatment effects is substantial: Adjusting for estimation error, we estimate the standard
deviation of τk(Wi) to be 11.0 for the small class treatment and of 9.1 for the aide treatment.30

Both standard deviations are an order of magnitude larger than the standard errors in Table 1.
On the other hand, the standard deviations for the contamination weights for the small class
and aide treatment are only moderate: 0.14 and 0.11, respectively. Moreover, the correlation
between the conditional treatment effects and the contamination weights is weak: 0.10 for
the small class effect estimate and −0.13 for the aide effect estimate. The moderate variation
in the contamination weights coupled with weak correlation between the weights and the
treatment effects explains why the contamination bias is small, even though the treatment
effects vary substantially across schools.

Had the experimental design been such that the contamination weights strongly correlate
with the treatment effects, sizable contamination bias could have resulted. To illustrate this,
we compute worst-case (positive and negative) weighted averages of the estimated τℓ(Wi) by re-
ordering them across the computed cross-treatment weights λkℓ(Wi). This exercise highlights
potential scenarios in which the randomization strata happened to have been highly correlated
with the effect heterogeneity. Columns 2 and 3 in panel B of Table 1 show that both bounds on
possible contamination bias are an order of magnitude larger than the actual contamination
bias: [−1.65, 1.67] for the small class size treatment and [−1.53, 1.53] for the teaching aide
treatment.31 Overall, for both treatments, the underlying heterogeneity in this setting makes
substantial contamination bias possible even though actual contamination bias turns out to
be relatively small.

Columns 2–5 of panel A report four treatment effect estimates that are free of contam-
ination bias. Column 2 gives the own-treatment effect component of the decomposition in
eq. (23), netting out the contamination bias estimate from column 1. This doubles the teach-
ing aide effect estimate, from 0.18 to 0.36, but the estimate remains statistically insignificant
with standard errors of around 0.71; the small classroom estimate moves very little. The
remaining columns report the three solutions to contamination bias discussed in Section 4.

30We adjust for estimation error by subtracting the average squared standard error from the empirical
variance of the treatment effect estimates and taking the square root.

31The point estimates and standard errors in Columns 4 and 5 in Table 1 do not account for the fact that
the re-ordering is based on estimates of τk(Wi) rather than the true treatment effects. This biases the reported
estimates away from zero. The reported estimates and associated confidence intervals can be interpreted as
giving an upper bound for the worst-case contamination bias.
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Column 3 estimates the unweighted ATEs of the small class size and teaching aide treatment,
by estimating the interacted regression specification in eq. (17). Column 4 estimates the one-
treatment-at-a-time regressions in eq. (24) for k = 1, 2. Finally, column 5 runs a weighted
regression of Yi onto Xi using the CW scheme in eq. (25).

There turns out to be little difference between these alternative estimates. The small class
size effect varies between 5.2 and 5.6, which is close to the original estimate. The teaching
aide effect varies between 0.01 and 0.26. To understand this lack of variation, recall from
Remark 7 that the difference between the unweighted ATE and an estimand that uses weights
λ(Wi) is given by the covariance between λ(Wi) and the conditional ATEs τk(Wi). Given the
sizable variability in the treatment effect estimates, the covariance will be small only if the
correlation between the weights and the treatment effects is small and if the weights display
limited variability. This turns out to be the case here, as depicted graphically in Figure D.3
in Appendix D. The figure shows that the correlations fall below 0.25 in absolute value for all
weighting schemes, and that the weights only vary between 0.7 and 1.2.

As a consequence of strong overlap, the standard errors are similar across the columns.
Indeed, the efficiency gain of the EW scheme relative to the ATE based on an efficiency bound
comparison using eq. (18) with λ = λk vs λ = 1 is less than 1.6% for both treatments under
homoskedasticity; the gain is even smaller under the CW scheme. The reported standard
errors, which allow for heteroskedasticity and don’t assume known propensity scores, align
with this prediction.32 As discussed in Remark 8 in Appendix A.3, these standard errors are
affected by the assumption of known propensity scores, used to derive the weighting schemes
underlying the estimates in columns 2 and 3. To gauge the impact of this assumption, we
also report a version of the standard errors computed under the assumption that the sample
treatment probabilities in each school match the true propensity scores. This changes the
standard errors little, showing that there is minimal cost to estimating the weights.

5.2 Further Applications

We next study the broader relevance of contamination bias using data from eight additional
studies with multiple-treatment regressions. These studies were identified by a systematic
search of papers in the AEA Data and Code Repository from 2013–2022 (see Appendix C.1
for details). Five studies are experiments like Project STAR; the remaining three use observa-
tional regressions to estimate racial disparities across multiple race groups (which we interpret
as descriptive, following Remark 4). We replicate a single representative specification for each

32The standard errors reported in parentheses in Panel B are valid for the population analogs βk and
βλCW , i.e. E[λk(Wi)τk(Wi)]/E[λk(Wi)] and E[λCW(Wi)τk(Wi)]/E[λCW(Wi)]. Since these standard errors are
potentially conservative when viewed as standard errors for βk and βλCW , the standard error comparison gives
an upper bound on the cost to estimating the weights.
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Sample size

Journal Type Spec. Original Overlap var(p(W )) > 0?
Paper (1) (2) (3) (4) (5) (6)

Benhassine et al. (2015) AEJ:AE Exp. 5(1) 11,074 6,996 Yes
Cole et al. (2013) AEJ:AE Exp. 7(6) 132 73 Yes
de Mel et al. (2013) AEJ:AE Exp. 2(2) 520 520 No
Drexler et al. (2014) AEJ:AE Exp. 2(2) 796 796 No
Duflo et al. (2015) AER Exp. 2A(1) 9,116 8,664 No
Fryer and Levitt (2013) AER Obs. 3(4) 8,806 6,623 Yes
Rim et al. (2020) AER:P&P Obs. 2(3) 4,037 620 Yes
Weisburst (2019) AER:P&P Obs. 2A 7,488 7,488 Yes

Notes: This table summarizes the five experimental studies and three observational studies of racial dispar-
ities collected from a search of the AEA Data and Code Repository from 2013–2022 (See Appendix C.1 for
details of this search). Column 3 reports the table and panel of the replicated specification with the column
or row of the specification in parentheses. See Appendix C.2 for details on the overlap sample and tests for
propensity score variation, summarized in columns 6 and 7.

Table 2: Further Applications

paper, corresponding to the first relevant regression discussed in the paper’s introduction.33

Table 2 lists the papers and specifications.
We conduct two preliminary analyses of each study before assessing contamination bias

and comparing alternative estimators. First, we ensure that the estimation sample satisfies
overlap, since otherwise the decomposition in Proposition 1 is typically not identified. If
overlap fails, we identify a large subset of each analysis sample where it is satisfied. Columns
4 and 5 of Table 2 list the number of observations in the full and overlap samples (the sample
sizes are equal if the original estimation sample satisfies overlap). Second, we check for
propensity score variation in each of the studies. In principle, protocol descriptions can reveal
whether some regression controls are necessary (and hence generate propensity score variation)
or whether the controls are just added to improve precision. In practice, however, this is not
always clear from paper descriptions.34 In Column 6 of Table 2, we conduct simple statistical
tests for whether there is statistically significant propensity score variation. Appendix C.2
details the overlap sample construction and these tests. We replicate the analyses from Table 1

33“Relevant” here means a multiple-treatment regression specification with controls, where at least one
treatment coefficient was statistically significant. The introduction in Cole et al. (2013) did not discuss any
relevant specifications; we instead pick the first specification with variation in treatment probabilities across
strata where our results would be most relevant.

34Moreover, some regression specifications are run on a non-random subsample of the full experimental
population (due to, e.g., attrition, or in a susample analysis). This could generate propensity score variation
even in simple experimental protocols.
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for each of the eight papers in Appendix C.3; we summarize the takeaways here.
Figure 1 summarizes the statistical and practical significance of contamination bias in

the estimated effect of each treatment for each specification (as estimated in the overlap
sample). Column A shows the absolute value of the contamination bias t-statistics for each
regression coefficient, obtained from the decomposition in eq. (23). In both columns, we sort
treatments within papers by this absolute t-statistic and sort papers by the maximum absolute
t-statistic across treatments. Column B shows a normalized version of the decomposition that
divides each term by the standard error of the regression coefficient. The darker bar shows
the own-treatment effect component of the decomposition, while the lighter bar denotes the
contamination bias component (which can be of the same or opposite sign).

The figure shows economically and statistically meaningful contamination bias in several
regression specifications. Notably, the largest contamination bias is in the observational sam-
ples and the smallest is in the experimental samples. This is consistent with the intuition
that the variability in the contamination weights is larger in observational studies as a con-
sequence of weaker overlap. Specifications from both de Mel et al. (2013) and Drexler et al.
(2014) have some of the smallest contamination bias and also have no statistically signifi-
cant propensity score variation, consistent with the theoretical results that contamination
bias requires variation in the contamination weights which in turn requires variation in the
propensity scores. On the other hand, the specification from Cole et al. (2013) shows the
most economically meaningful contamination bias among the experimental studies while also
exhibiting meaningful propensity score variation.

In Figure 2, we plot the normalized estimates of the treatment effects for each estima-
tor from Table 1. We also plot a line between the estimates from OLS regression and from
the common-weights (CW) estimator we propose. Among observational studies, we see sub-
stantial variation across the different estimates, and a much larger difference between the
OLS estimator and the CW estimator. In the experimental papers, the difference is much
smaller.35 This is consistent with the observational papers including more observations with
extreme propensity scores, magnifying the impact of the choice of weighting scheme.

6 Conclusion

Regressions with multiple treatments and flexible controls are common across a wide range
of empirical settings in economics. We show that such regressions generally fail to estimate
a convex weighted average of treatment effects, with coefficients on each treatment generally
contaminated by the effects of other treatments. We provide intuition for why the influen-

35The same pattern arises when comparing the estimates in the full sample; see Appendix C.3.
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A: Cont. bias t-statistic, |β̂cb|
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Figure 1: Contamination bias across all applications

Notes: This figure summarizes the analysis of contamination bias in the STAR application and the additional
applications in Table 2. The six experimental studies are shown in blue; the three observational studies of
racial disparities are shown in orange. Column A shows the absolute value of contamination bias t-statistics for
each regression coefficient, given by eq. (23). Column B shows a normalized version of this decomposition that
divides each term by the standard error of the regression coefficient. The darker bar shows the own-treatment
effect component, while the lighter bar shows the contamination bias component.
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Figure 2: Treatment effect estimates with using different estimators

Notes: This figure plots normalized estimates of treatment effects for each estimator from of Table 1, applied
to the STAR application and additional applications in Table 2. The six experimental studies are shown in
blue; the three observational studies of racial disparities are shown in orange. Each specification includes a
line connecting the estimate from OLS regression and the common-weights (CW) estimator we propose. EW
stands for the easiest-to-estimate weighting. For the Rim et al. application the ATE estimate for the “Asian”
coefficient equals −8.4, and it is not displayed as it falls outside the axis limits.
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tial result of Angrist (1998) fails to generalize to multiple treatments, and show how the
contamination bias problem connects to a recent literature studying DiD regressions. We
then discuss three alternative estimators that are free of this bias, including a new approach
targeting easiest-to-estimate weighted average effects.

Our analysis of nine empirical applications finds economically and statistically meaningful
contamination bias in observational studies. Contamination bias in experimental studies is
more limited, even in papers that display statistically significant variation in the propensity
scores. We also find that the choice among alternative estimators that are free of contam-
ination bias matters more in the observational studies. Overall, our analysis highlights the
importance of testing the empirical relevance of theoretical concerns with how regression
combines heterogeneous effects.
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Appendix A Proofs and additional results

A.1 Proof of Proposition 1

We prove a generalization of the Proposition 1 which allows any vector of treatments Xi

(which may not be binary or mutually exclusive). We continue to consider the partially linear
model in eq. (8), and maintain Assumption 2, as well as conditional mean-independence of
the potential outcomes E[Yi(x) | Xi,Wi] = E[Yi(x) | Wi], which extends Assumption 1. We
also assume that the potential outcomes Yi(x) are linear in x, conditional on Wi:

E[Yi(x) |Wi = w] = E[Yi(0) |Wi = w] + x′τ(w),

for some function τ . This condition holds trivially in the main-text discussion of mutually ex-
clusive binary treatments. More generally, τk(w) corresponds to the conditional average effect
of increasing Xik by one unit among observations with Wi = w. Although this assumption is
not essential, it considerably simplifies the derivations. We continue to define τ = E[τ(Wi)]

as the average vector of per-unit effects.
We now prove that under these assumptions βk is given by the expression in eq. (15). We

further prove that E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0 for ℓ ̸= k in general, and give a more
detailed characterization of the weights in the case of mutually exclusive treatment indicators.

First note that by iterated expectations and conditional mean-independence, E[
≈
XikYi] =

E[E[
≈
XikYi | Xi,Wi]] = E[

≈
XikE[Yi(0) | Wi]] + E[

≈
XikX

′
iτ(Wi)]. By definition of projection,

E[X̃ig(Wi)] = 0 for all g ∈ G (van der Vaart, 1998, Theorem 11.1); thus if eq. (13) holds
E[

≈
XikE[Yi(0) | Wi]] = 0. Similarly, under eq. (12), E[

≈
Xik | Wi] = 0, so by iterated expecta-

tions, E[
≈
XikE[Yi(0) |Wi]] = E[E[

≈
Xik |Wi]E[Yi(0) |Wi]] = 0. Thus,

βk =
E[

≈
XikX

′
iτ(Wi)]

E[
≈
X2

ik]
=
E[

≈
XikXikτk(Wi)]

E[
≈
X2

ik]
+

∑
ℓ̸=k E[

≈
XikXiℓτℓ(Wi)]

E[
≈
X2

ik]
.

This proves eq. (15).
To show that E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0 for ℓ ̸= k in general, note that

E[λkk(Wi)] =
E[

≈
XikXik]

E[
≈
X2

ik]
= 1,

since
≈
Xi,k is a residual from projecting Xik onto the space spanned by functions of the form

g̃(Wi) +X ′
i,−kβ̃−k, so that E[

≈
XikXik] = E[

≈
X2

ik]. Furthermore,
≈
Xi,k must also be orthogonal

to Xi,−k by definition of projection, so that E[λkℓ(Wi)] = E[
≈
XikXiℓ]/E[

≈
X2

ik] = 0.
Finally, if Xi are mutually exclusive treatment indicators, write E∗[Xik | Xi,−k,Wi] =
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X ′
i,−kδ̃k + g̃k(Wi). Since XikXi,−k = 0, we may write

λkk(Wi) =
pk(Wi)(1− g̃k(Wi))

E[
≈
X2

ik]
=
pk(Wi)(1− E∗[Xik | Xi,−k = 0,Wi])

E[
≈
X2

ik]
,

and, by similar arguments, λkℓ(Wi) = −pℓ(Wi)E
∗[Xik | Xiℓ = 1,Wi]/E[

≈
X2

ik], which yields the
second expression for the weights. It remains to show that λkk(Wi) ≥ 0 if eq. (12) holds and
Xi consists of mutually exclusive indicators. To that end, observe that λkℓ(Wi) is given by
the (k, ℓ) element of

Λ(Wi) = E[X̃iX̃
′
i]
−1E[X̃iX

′
i |Wi]

If eq. (12) holds, then we can write this as Λ(Wi) = E[v(Wi)]
−1v(Wi) where v(Wi) = E[X̃iX̃

′
i |

Wi]. IfX is a vector of mutually exclusive indicators, then v(Wi) = diag(p(Wi))−p(Wi)p(Wi)
′.

Let v−k(Wi) denote the submatrix with the kth row and column removed, and let p−k(Wi)

denote subvector with the kth row removed. Then by the block matrix inverse formula,

λkk(Wi) =
pk(Wi)(1− pk(Wi))− E[pk(Wi)p−k(Wi)

′]E[v−k(Wi)]
−1p−k(Wi)pk(Wi)

E[pk(Wi)(1− pk(Wi))]− E[pk(Wi)p−k(Wi)′]E[v−k(Wi)]−1E[pk(Wi)p−k(Wi)]

Note p0(Wi) = 1 −
∑K

k=1 pk(Wi) and pk(Wi)p−k(Wi) = v−k(Wi)ι − p0(Wi)p−k(Wi), where ι
denotes a (K − 1)-vector of ones. Thus, the numerator can be written as

pk(Wi)(1− pk(Wi))− ι′p−k(Wi)pk(Wi)

+ E[p0(Wi)p−k(Wi)
′]E[v−k(Wi)]

−1p−k(Wi)pk(Wi)

= pk(Wi)p0(Wi) + E[p0(Wi)p−k(Wi)
′]E[v−k(Wi)]

−1p−k(Wi)pk(Wi).

The eigenvalues of E[v−k(Wi)] are positive because it is a covariance matrix. Furthermore,
the off-diagonal elements of E[v(Wi)] are negative, and hence the off-diagonal elements of
E[v−k(Wi)] are also negative. It therefore follows that E[v−k(Wi)] is an M -matrix (Berman
& Plemmons, 1994, property D16, p. 135). Hence, all elements of E[v−k(Wi)]

−1 are positive
(Berman & Plemmons, 1994, property N38, p. 137). Thus, both summands in the above
expression are positive, so that λkk(Wi) ≥ 0.

A.2 Proof of Proposition 2

The parameter of interest θλ,c depends on the realizations of the controls. We therefore derive
the semiparametric efficiency bound conditional on the controls; i.e. we show that eq. (18) is
almost-surely the variance bound for estimators that are regular conditional on the controls.
Relative to the earlier results in Hahn (1998) and Hirano et al. (2003), we need to account
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for the fact that the data are no longer i.i.d. once we condition on the controls.
To that end, we use the notion of semiparametric efficiency based on the convolution

theorem of van der Vaart and Wellner (1989, Theorem 2.1) (see also van der Vaart & Wellner,
1996, Chapter 3.11). We first review the result for convenience. Consider a model {Pn,θ : θ ∈
Θ} parametrized by (a possibly infinite-dimensional) parameter θ. Let Ṗ denote a tangent
space, a linear subspace of some Hilbert space with an inner product ⟨·, ·⟩. Suppose that
the model is locally asymptotically normal (LAN) at θ relative to a tangent space Ṗ: for
each g ∈ Ṗ, there exists a sequence θn(g) such that the likelihood ratios are asymptotically
quadratic, dPn,θn(g)/dPn,θ = ∆n,g − ⟨g, g⟩/2 + oPn,θ

(1), where (∆n,g)g∈Ṗ converges under
Pn,θ to a Gaussian process with covariance kernel ⟨g1, g2⟩. Suppose also that the parameter
βn(Pn,θ) is differentiable: for each g,

√
n(βn(Pn,θn(g)) − βn(Pn,θ)) → ⟨ψ, g⟩ for some ψ that

lies in the completion of Ṗ. Then the semiparametric efficiency bound is given by ⟨ψ,ψ⟩:
the asymptotic distribution of any regular estimator of this parameter, based on a sample
Sn ∼ Pn,θ, is given by the convolution of a random variable Z ∼ N (0, ⟨ψ,ψ⟩) and some other
random variable U that is independent of Z.

To apply this result in our setting, we proceed in three steps. First, we define the tangent
space and the probability-one set over which we will prove the efficiency bound. Next, we
verify that the model is LAN. Finally, we verify differentiability and derive the efficient
influence function ψ.

Step 1 By the conditional independence assumption in eq. (11), we can write the density
of the vector (Yi(0), . . . , Yi(K), Di) (with respect to some σ-finite measure) conditional on
Wi = w as f(y0, . . . , yK | w) ·

∏K
k=0 pk(w)

1{d=k}, where f denotes the conditional density of
the potential outcomes, conditional on the controls. The density of the observed data SN =

{(Yi, Di)}Ni=1 conditional on (W1, . . . ,WN ) = (w1, . . . , wN ) is given by
∏N

i=1

∏K
k=0(fk(yi |

wi)pk(wi))
1{di=k}, where fk(y | w) =

∫
f(yk, y−k | w)dy−k.

Since the propensity scores are known, the model is parametrized by θ = f . Consider
one-dimensional submodels of the form fk(y | w; t) = fk(y | w)(1 + t × sk(y | w)), where
the function sk is bounded and satisfies

∫
sk(y | w)fk(y | w)dy = 0 for all w ∈ W with W

denoting the support of Wi. For small enough t, we have fk(y | w; t) ≥ 0 by boundedness
of sk; hence fk(y | w; t) is a well-defined density for t small enough. The joint log-likelihood,
conditional on the controls, is given by

N∑
i=1

K∑
k=0

1{Di = k}(log fk(Yi | wi; t) + log pk(wi)).

The score at t = 0 is
∑N

i=1 s(Yi, Di | wi), with s(Yi, Di | wi) =
∑K

k=0 1{Di = k}sk(Yi | wi).
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This result suggests defining the tangent space to consist of functions s(y, d | w) =∑K
k=0 1{d = k}sk(y | Wi = w), such that sk is bounded and satisfies

∫
sk(y | w)fk(y |

w)dy = 0 for all w ∈ W. Define the inner product on this space by ⟨s1, s2⟩ = E[s1(Yi, Di |
Wi)s2(Yi, Di |Wi)]. Note this is a marginal (rather than a conditional) expectation, over the
unconditional distribution (Yi, Di,Wi) of the observed data.

We will prove the efficiency bound on the event E that (i) 1
N

∑N
i=1E[s(Yi, Di | Wi)

2 |
Wi] → E[s(Y,Di | Wi)

2], (ii) 1
N

∑N
i=1 λ(Wi) → E[λ(Wi)], and (iii) 1

N

∑N
i=1 λ(Wi)

∑K
k=0 ck ·

E[Yi(k)sk(Yi(k) | Wi) | Wi] →
∑K

k=0 ckE[λ(Wi)Yi(k)sk(Yi(k) | Wi)]. By assumptions of the
proposition, these are all averages of functions of Wi with finite absolute moments. Hence, by
the law of large numbers, E is a probability one set.

Step 2 We verify that the conditions (3.7–12) of Theorem 3.1 in McNeney and Wellner
(2000) hold on the set E conditional on the controls, with θN (s) = f(· | ·; 1/

√
N). Let

αNi =
∏K

k=0(fk(Yi | wi; 1/
√
N)/fk(Yi | wi))

1{Di=k} =
∏K

k=0(1 + sk(Yi | w)/
√
N)1{Di=k}

denote the likelihood ratio associated with the ith observation. Since this is bounded by the
boundedness of sk, condition (3.7) holds. Also since (1+ tsk)

1/2 is continuously differentiable
for t small enough, with derivative sk/2

√
1 + tsk, it follows from Lemma 7.6 in van der

Vaart (1998) that N−1
∑N

i=1E[
√
N(α

1/2
Ni − 1) − s(Yi, Di | wi)/2 | Wi = wi]

2 → 0 such
that the quadratic mean differentiability condition (3.8) holds. Since sk is bounded, the
Lindeberg condition (3.9) also holds. Next, 1

N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] converges to
E[s(Y,Di | Wi)

2] = ⟨s, s⟩ on E by assumption. Hence, conditions (3.10) and (3.11) also hold.
Since the scores ∆N,s = 1√

N

∑N
i=1 s(Yi, Di | wi) are exactly linear in s, condition (3.12) also

holds. It follows that the model is LAN on E .

Step 3 Write the parameter of interest θλ,c as βN (f) =
∑N

i=1 λ(wi)
∫
y
∑K

k=0 ckfk(y |
wi)dy/

∑N
i=1 λ(wi). It follows that

√
N(βN (f(· | ·; 1/

√
N))− βN (f))

=
1

N−1
∑N

i=1 λ(wi)

1√
N

N∑
i=1

λ(wi)

∫
y

K∑
k=0

ck(fk(y | wi; 1/
√
N)− fk(y | wi))dy

=
1

N−1
∑N

i=1 λ(wi)

1

N

N∑
i=1

λ(wi)

K∑
k=0

ck

∫
ysk(y | wi)fk(y | wi)dy,
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which converges to
∑K

k=0 ckE[λ(Wi)Yi(k)sk(Yi(k) | Wi)]/E[λ(Wi)] on E by assumption. We
can write this as ⟨ψ, s⟩, where

ψ(Yi, Di,Wi) =
K∑
k=0

1{Di = k}λ(Wi)ck
(Yi − µk(Wi)).

pk(Wi)E[λ(Wi)]
.

Observe that ψ is in the model tangent space, with the summands playing the role of sk(y | w)
(more precisely, since ψ is unbounded, it lies in the completion of the tangent space). Hence,
the semiparametric efficiency bound is given by E[ψ2].

A.3 Efficiency of the CW estimator

The next result shows that the estimator in eq. (26) is efficient. We defer its proof to Ap-
pendix A.4.

Proposition 3. Suppose eq. (11) holds in an i.i.d. sample of size N , with known non-
degenerate propensity scores pk(Wi). Let β∗

λCW,k
= E[λCW(Wi)τk(Wi)]/E[λCW(Wi)], and

α∗
k = β∗

λCW,k
+E[λCW(Wi)µ0(Wi)]/E[λCW(Wi)]. Suppose that the fourth moments of λCW(Wi)

and µ(Wi) are bounded, and that pk ∈ G, (µk(Wi) − α∗
k)

λCW(Wi)
2

pk′ (Wi)2
∈ G, and (µk(Wi) −

α∗
k)

λCW(Wi)
pk(Wi)

∈ G for all k, k′. Then, provided it is asymptotically linear and regular, β̂λ̂CW

achieves the semiparametric efficiency bound for estimating βλCW, with diagonal elements of
its asymptotic variance of:

1

E[λCW(Wi)]2
E

[
λCW(Wi)

2σ20(Wi)

p0(Wi)
+
λCW(Wi)

2σ2k(Wi)

pk(Wi)

+λCW(Wi)
2(τk(Wi)− β∗λCW,k)

2

(
K∑

k′=0

λCW(Wi)
2

pk(Wi)3
− 1

)]
.

This efficiency result doesn’t rely on homoskedasticity: under heteroskedasticity, the estimator
β̂λ̂CW is still efficient for βλCW (although the weighting λCW(Wi) need not be optimal under
heteroskedasticity). It is stated under the high-level condition that β̂λ̂CW is regular; the proof
uses calculations from Newey (1994) to verify the estimator achieves the efficiency bound.
Primitive regularity conditions will depend on the form of G and are omitted for brevity.

Remark 8. The asymptotic variance of the estimator β̂λCW is larger than the asymptotic
variance of the infeasible estimator that replaces the estimated weights λ̂CW(Wi)/p̂Di(Wi) in
eq. (26) with the infeasible weights λCW(Wi)/pDi(Wi). The latter achieves the asymptotic
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variance implied by Corollary 2,

1

E[λCW(Wi)]2
E

[
λCW(Wi)

2σ20(Wi)

p0(Wi)
+
λCW(Wi)

2σ2k(Wi)

pk(Wi)

]
. (27)

The extra term of the asymptotic variance in Proposition 3 relative to eq. (27) reflects the
cost of having to estimate the weights.36 Analogous term is present in the expression for the
asymptotic variance of the one-treatment-at-a-time estimator implementing the weights from
Corollary 1.

A.4 Proof of Proposition 3

We first derive the semiparametric efficiency bound for estimating βλCW when the propensity
scores are not known, using the same steps, notation, and setup as in the proof of Proposition 1.
We then verify that the estimator β̂λ̂CW achieves this bound.

Step 1 Since the propensity scores are not known, the model is now parametrized by θ =

(f, p). Consider one-dimensional submodels of the form fk(y | w; t) = fk(y | w)(1 + tsy,k(y |
w)), and pk(w; t) = pk(w)(1+ tsp,k(x)), where the functions sy,k, sp,k are bounded and satisfy∫
sy,k(y | w)fk(y | w)dy = 0 and

∑K
k=0 pk(w)sp,k(w) = 0 for all w ∈ W. These conditions

ensure that fk(y | w; t) and pk(w; t) are positive for t small enough and that
∑K

k=0 pk(w; t) =∑K
k=0 pk(w) = 1, so that the submodel is well-defined. The joint log-likelihood, conditional

on the controls, is given by

N∑
i=1

K∑
k=0

1{Di = k}(log fk(Yi | wi; t) + log pk(wi; t)).

The score at t = 0 is given by
∑N

i=1 s(Yi, Di | wi), with s(Yi, Di | wi) =
∑K

k=0 1{Di =

k}(sy,k(Yi | wi) + sp,k(wi)).
In line with this result, we define the tangent space to consist of all functions s(y, d |

w) =
∑K

k=0 1{d = k}(sy,k(y | w) + sp,k(w)) such that sy,k and sp,k satisfy the above re-
strictions. Define the inner product on this space by the marginal expectation ⟨s1, s2⟩ =

E[s1(Yi, Di | Wi)s2(Yi, Di | Wi)]. We will prove the efficiency bound on the event E that (i)
1
N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] → E[s(Y,Di | Wi)
2]; (ii) N−1

∑
i λ

CW(Wi) → E[λCW(Wi)];
(iii) N−1

∑
i λ

CW(Wi)
∑K

k=0 ckE[Yi(k) · sy,k(Yi | Wi) | Wi] →
∑K

k=0 ckE[λCW(Wi)Yi(k) ·
36The extra term shows this cost is zero if either there is no treatment effect heterogeneity, so that τk(Wi) =

β∗
λCW,k, or if the treatment assignment is completely randomized so that pk(Wi) = 1/(K + 1). In the latter

case λ∗(Wi) = 1/(K + 1)2 so
∑K

k=0 λ
CW(Wi)

2/p(Wi)
3 = 1. The extra term can be avoided altogether if we

interpret β̂λ̂CW as an estimator of βλ̂CW . This follows from arguments in Crump et al. (2006, Lemma B.6).
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sy,k(Yi(k) |Wi)]; (iv)N−1
∑N

i=1 λ
CW(Wi)

2
∑

k,k′ ck′µk′(Wi)
sp,k(Wi)
pk(Wi)

→ E[λCW(Wi)
2·
∑

k,k′ ck′ ·

µk′(Wi)
sp,k(Wi)
pk(Wi)

]; (v) N−1
∑N

i=1 λ
CW(Wi)

2
∑K

k=0
sp,k(Wi)
pk(Wi)

→ E[λCW(Wi)
2
∑K

k=0
sp,k(Wi)
pk(Wi)

]; and
(vi) βλCW → β∗

λCW . Under the proposition assumptions and the law of large numbers, E is a
probability-one set.

Step 2 We verify that the conditions (3.7–3.12) of Theorem 3.1 in McNeney and Wellner
(2000) hold on the set E conditional on the controls, with θN (s) = (f(· | ·; 1/

√
N), p(·; 1/

√
N)).

Let αNi =
∏K

k=0(fk(Yi | wi; 1/
√
N)pk(wi; 1/

√
N)/fk(Yi | wi)pk(wi))

1{Di=k} =
∏K

k=0((1 +

N−1/2sy,k(Yi | Wi;N
−1/2))(1 + N−1/2sp,k(wi; 1/

√
N)))1{Di=k} denote the likelihood ratio

associated with the ith observation. Since this is bounded by the boundedness of sy,k, sp,k,
condition (3.7) holds. Also, since (1+tsp,k)1/2 and (1+tsy,k)

1/2 are continuously differentiable
for t small enough, it follows from Lemma 7.6 in van der Vaart (1998) that the quadratic mean
differentiability condition (3.8) holds. Since sk is bounded, the Lindeberg condition (3.9) also
holds. Next, 1

N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] converges to E[s(Y,Di | Wi)
2] = ⟨s, s⟩ on

E by assumption. Hence, conditions (3.10) and (3.11) also hold. Since the scores ∆N,s =
1√
N

∑N
i=1 s(Yi, Di | wi) are exactly linear in s, condition (3.12) also holds. It follows that the

model is LAN on E .

Step 3 Write the parameter of interest, βλCW , as βN (θ) =
∑N

i=1 λ
CW(wi)

∫
y
∑K

k=0 ckfk(y |
wi)dy/

∑N
i=1 λ

CW(wi), where λCW(wi) = 1/
∑K

k=0 pk(wi)
−1. Letting β̇N (θ) denote the deriva-

tive of βN (θ(· | ·; t)) at t = 0, we have

√
N(βN (θ(· | ·; 1/

√
N))− βN (θ)) = β̇N (θ) + o(1).

Let h(w) = λCW(w)
∑K

k=0 ck
∫
ysy,k(y | w)fk(y | w)dy, and h̃(Wi) =

∑K
k′=0 ck′µk′(Wi)−β∗λCW .

The derivative may then be written as

β̇N (θ) =
1∑N

i=1 λ
CW(wi)

N∑
i=1

(
h(wi) + λCW(wi)

2
K∑
k=0

sp,k(wi)

pk(wi)

(
K∑

k′=0

ck′µk′(wi)− βN (θ)

))

→ 1

E[λCW
i ]

E

[
h(Wi) + (λCW

i )2
K∑
k=0

sp,k(Wi)

pk(Wi)

(
K∑

k′=0

ck′µk′(Wi)− β∗λCW

)]

=
1

E[λCW
i ]

E

[
λCW
i

K∑
k=0

Xki

(
ck
Yi − µk(Wi)

pk(Wi)
+
λCW
i h̃(Wi)

pk(Wi)2

)
s(Yi, Di |Wi)

]
,

where λCW
i = λCW(Wi), the limit on the second line holds on the event E , and the third

line uses E[Xki(Yi − µk(Wi))s(Yi, Di | Wi) | Wi] = pk(Wi)E[Yi(k)sy,k(Yi(k) | Wi) | Wi] and
E[Xkis(Yi, Di | Wi) | Wi] = pk(Wi)sp,k(Wi). Since for any function a(Wi), E[a(Wi)s(Yi, Di |
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Wi)] = 0, subtracting 1
E[λCW

i ]

∑K
k=0E[(λCW

i )2 h̃(Wi)
pk(Wi)

s(Yi, Di | Wi)] = 0 from the preceding

display implies
√
N(βN (θ(· | ·; 1/

√
N)) − βN (θ)) = E[ψ(Yi, Di,Wi)s(Yi, Di | Wi)] + o(1),

where

ψ(Yi, Di,Wi) =
K∑
k=0

Xki ·
(

λCW
i

E[λCW
i ]

ck
Yi − µk(Wi)

pk(Wi)
+

λCW
i

E[λCW
i ]

h̃(Wi)

(
λCW
i

p2k
− 1

))
.

Observe that ψ lies in the completion of the tangent space, with the expression in parentheses
playing the role of sy,k(Yi | Wi) + sp,k(Wi). Hence, the semiparametric efficiency bound is
given by E[ψ2], which yields the expression in the statement of the Proposition.

Attainment of the bound We derive the result in two steps. First, we show that

√
N(βλCW − β∗λCW) =

1√
N

N∑
i=1

ψ∗(Wi) + op(1)whereψ∗(Wi) =
λCW
i

E[λCW
i ]

(τ(Wi)− β∗λCW). (28)

Second, we show that

√
N(β̂λ̂CW − β∗λCW) =

1√
N

N∑
i=1

ψ(Yi, Di,Wi) + op(1), (29)

where, letting ϵki = Yi − µk(Wi),

ψk(Yi, Di,Wi) =
λCW
i

E[λCW
i ]

(
Xkiϵki
pk(Wi)

− X0iϵ0i
pk(Wi)

+ (τk(Wi)− β∗λCW,k)λ
CW
i

∑
k′

Xk′i

pk′(Wi)2

)
.

Together, these results imply that the asymptotic variance of β̂λ̂CW as an estimator of βλCW

is given by var(ψ − ψ∗), which coincides with the semiparametric efficiency bound.
Equation (28) follows directly under the assumptions of the proposition by the law of

large numbers and the fact that the variance of λCW
i (τ(Wi) − β∗

λCW) is bounded. To show
eq. (29), write β̂λ̂CW,k = α̂k − α̂0, where α̂ is a two-step method of moments estimator based
on the (K + 1) dimensional moment condition E[m(Yi, Di,Wi, α

∗, p)] = 0 with elements
mk(Yi, Di,Wi, α

∗, p) = λCW
i

Xki
pk(Wi)

(Yi − α∗
k), and α∗ is a (K + 1) dimensional vector with

elements α∗
k = E[λCW

i µk(Wi)]/E[λCW
i ].

Consider a one-dimensional path Ft such that the distribution of the data is given by F0.
Let pk,t(Wi) = EFt [Xki | Wi] denote the propensity score along this path. The derivative of
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E[mk(Yi, Di,Wi, α
∗, pt)] with respect to t evaluated at t = 0 is

E

[
λCW
i Xki

pk(Wi)
(Yi − α∗

k)

(
λCW
i

K∑
k′=0

ṗk′(Wi)

pk′(Wi)2
− ṗk(Wi)

pk(Wi)

)]
=

K∑
k′=0

E[δkk′(Wi)
′ṗk′(Wi)],

where ṗk denotes the derivative of pk,t at t = 0, and

δk,k′(Wi) = λCW
i (µk(Wi)− α∗

k)

(
λCW
i

pk′(Wi)2
− 1{k = k′}

pk(Wi)

)
.

Under the assumptions of the proposition, δk,k′ ∈ G. It therefore follows by Proposition 4 in
Newey (1994) that the influence function for α̂k is given by

1

E[λCW
i ]

(
λCW
i Xki

pk(Wi)
(Yi − α∗

k) +
∑
k′

δkk′(Wi)(Xk′i − pk′(Wi))

)

=
λCW
i

E[λCW
i ]

(
Xkiϵki
pk(Wi)

+ (µk(Wi)− α∗
k)λ

CW
i

∑
k′

Xk′i

pk′(Wi)2

)
,

which yields eq. (29).

Appendix B Connections to the DiD Literature

In this appendix we elaborate on the connections between Proposition 1 and the recent liter-
ature studying potential biases from heterogeneous treatment effects in DiD regressions and
related specifications (e.g. Goodman-Bacon, 2021; Sun & Abraham, 2021; Hull, 2018b; de
Chaisemartin & D’Haultfœuille, 2020, 2022; Callaway & Sant’Anna, 2021; Borusyak et al.,
2022; Wooldridge, 2021). We first show how our framework fits a TWFE regression with a
general treatment specification. We then show how Proposition 1 applies to three particular
specifications: a static binary treatment, a dynamic “event study” treatment, and a static
multivalued treatment (or “movers regression”). In each case we discuss whether there is a
potential for bias—either contamination bias or own-treatment negative weighting—and give
a numerical illustration.

Consider a panel of units indexed by j = 1, . . . , n which are observed over time periods
t = 1, . . . , T . For simplicity, we assume the panel is balanced such that the sample size is
N = nT . For an observation i = (j, t), let Ji = j and Ti = t denote the corresponding unit
and time period, respectively. In a TWFE specification, the controls only comprise these two
variables, Wi = (Ji, Ti), and they enter the control function as dummies, g(Wi) = α+(1{Ji =
2}, . . . ,1{Ji = n},1{Ti = 2}, . . . ,1{Ti = T})′γ, with the indicators 1{Ji = 1} and 1{Ti = 1}
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omitted to avoid perfect collinearity.
To study these specifications, we follow de Chaisemartin and D’Haultfœuille (2020) and

Borusyak et al. (2022) in considering the n observed units as fixed, and we condition on their
treatment status (results when the units are sampled from a large population are analogous).
For each unit j, we observe a random T -vector of outcomes Yj = (Yj1, . . . , YjT ) and a fixed
T -vector of (K + 1)-valued treatments Dj = (Dj1, . . . ,DjT ). These treatments are used to
construct a vector of (K + 1)-valued “treatments states” Dj = (Dj1, . . . , DjT ), with Djt ∈
{0, . . . ,K}. Setting Dj = Dj covers scenarios with static treatments; as we show below, other
choices of Dj allows us to cover scenarios with dynamic treatment effects. As in the main
text, Xjt denotes a K-vector of treatment status indicators derived from Djt.

We make two assumptions. First, we assume that potential outcomes Yjt(dt) depend on
the T -vector of treatments only through the current value dt of the treatment state, such that
Yjt = Yjt(Djt).37 Second, we make a parallel trends assumption by writing the untreated
potential outcomes as

Yjt(0) = αj + λt + ηjt,

for fixed αj and λt, and assuming
E[ηjt] = 0. (30)

Together these expressions imply E[Yjt(0)] = αj+λt, which is how parallel trends is sometimes
formalized (c.f. Assumption 1 in Borusyak et al. (2022); weaker versions of the parallel trends
assumption yield analogous results). We do not restrict the dependence of ηjt across units
or time, nor do we make restrictions on the potentially random treatment effects τjt,k =

Yjt(k)− Yjt(0). Collecting these effects in a vector τjt, we have

Yjt = X ′
jtτjt + αj + λt + ηjt. (31)

This outcome model reduces to a conventional TWFE model under the assumption of constant
treatment effects: τjt = β for all (j, t).

Since the only source of randomness are the shocks ηjt and the treatment effects τjt,
this setup fits into the framework of Section 3 if we interpret the expectation in eq. (8) as
averaging over the joint distribution of {τjt, ηjt}n,Tj=1,t=1. Specifically, (β, g) are the minimizers
of N−1

∑n
j=1

∑T
t=1Eτ,η[(Yjt−X ′

jtβ̃− g̃(Wjt))
2], where the subscript on the expectation makes

explicit that we only integrate over the joint distribution of {τjt, ηjt}n,Tj=1,t=1. The parallel
trends assumption implies µ0(Wi) = αJi + λTi , so that eq. (13) in Assumption 2 holds. In
other words, the parallel trend assumption implies that our controls g(Wi) correctly specify

37This assumption rules out misspecification of the treatment states, such as when there are dynamic effects
but Djt = Djt only indexes contemporaneous treatment status, as noted in footnote 10.
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the untreated potential outcome mean. Additionally, Assumption 1 holds trivially because
the treatment vector is non-random.

To make the link to Proposition 1, note that X̃jt = Xjt − X̄j − X̄t + X̄ coincides with
the sample residual from regressing Xi onto unit and time effects. Here X̄j = 1

T

∑T
t=1Xjt,

X̄t =
1
n

∑n
j=1Xjt, and X̄ = 1

n

∑n
j=1 X̄j . We may then write eq. (10) as

β =

 n∑
j=1

T∑
t=1

Eτ,η[X̃jtX̃
′
jt]

−1
n∑

j=1

T∑
t=1

Eτ,η[X̃jtYjt]

=

 n∑
j=1

T∑
t=1

X̃jtX̃
′
jt

−1
n∑

j=1

T∑
t=1

X̃jtX
′
jtE[τjt],

(32)

where the second equality uses eqs. (30) and (31), and the fact that only ηjt and τjt are
stochastic. Proposition 1 implies that the coefficient on the kth element on Xjt is given by

βk =
∑
j,t

λkk(j, t)E[τjt,k] +
∑
ℓ̸=k

∑
j,t

λkℓ(j, t)E[τjt,ℓ] (33)

where

λkk(j, t) =

≈
Xjt,kXjt,k∑

j,t

≈
X2

jt,k

, and λkℓ(j, t) =

≈
Xjt,kXjt,ℓ∑

j,t

≈
X2

jt,k

,

and
≈
Xjt,k is the sample residual from regressing X̃jt,k onto the remaining elements of X̃jt.

Recall that since we do not assume that eq. (12) holds, it is not guaranteed that λkk(j, t) ≥ 0.
To unpack this result, we now consider four special cases from the literature.

Static binary treatment Consider a DiD setting where units adopt (and potentially
drop) a binary treatment at different time periods—as studied by de Chaisemartin and
D’Haultfœuille (2020) and Goodman-Bacon (2021). For example, different states j may
choose to roll out a policy in different years and a researcher wishes to estimate the aver-
age effect of this policy using this staggered adoption. We assume that the treatment is static,
setting Djt = Djt, with K = K = 1. Since the treatment is binary, Xjt = Djt is a scalar with
≈
Xjt,1 = X̃jt, and the second term in eq. (33) drops; the weights on the first term simplify to

λ11(j, t) =
X̃jtXjt∑
j′,t′ X̃

2
j′t′

=
(1−Xj −Xt +X)Xjt∑

j′,t′ X̃
2
j′t′

,

which coincides with the expression in Theorem 1 of de Chaisemartin and D’Haultfœuille
(2020). These treatment weights are not guaranteed to be convex since eq. (12) does not
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hold.38 In contrast, Athey and Imbens (2022) consider staggered DiD regressions where
eq. (12) holds because intervention timing is assumed to be random (in place of the parallel
trends assumption). Under this design-based assumption, Proposition 1 shows the treatment
weights (corresponding to those in Theorem 1(iv) of Athey and Imbens (2022)) are convex.

The above expression for λ11 yields a simple necessary and sufficient condition for convex
weights, which is that for units j that are treated in period t, 1 − Xj − Xt + X ≥ 0. In
staggered adoption designs, Xt is increasing with t. Thus, in staggered adoption designs, it
suffices to check this condition for t = T , and for unit j that adopts the treatment first—that
is, to check whether

1−max
j
Xj −XT +X ≥ 0. (34)

Condition (34) holds in the canonical DiD case with a single intervention date, where the
first n1 < n units treated in the last T1 < T periods and untreated in the earlier periods
1, . . . , T − T1. The remaining units are never treated, so that Djt = Djt = 1{j ≤ n1, t ≥
T − T1}. This nests the simplest DiD specification where T = 2 and T1 = 1 (e.g. Card &
Krueger, 1994). In this case, when units in the treatment group are treated, 1−Xj−Xt+X =

(1−n1/n)(1− T1/T ) so that the weights λ11(j, t) are non-negative, and eq. (33) simplifies to:

β1 =
∑
j,t

λ11(j, t)E[τjt,1], λ11(j, t) =
(1− n1

n )(1− T1
T )Xjt

(1− n1
n )(1− T1

T )n1T1
nT

=
Xjt

n1T1/N
,

which is simply the average treatment effect for the n1T1 treated observations.
However, in presence of multiple treatment adoption dates, eq. (34) may fail. To illustrate,

consider a case with three time periods (T = 3) and three groups of units: E , L, and N , with
respective sizes nE , nL, and nN . Units j ∈ E are “early adopters”, and are treated beginning
in period 2. Units j ∈ L are “late adopters”, and are treated only in period 3. Units in the
last group are never treated.39 In this case, eq. (34) simplifies to 1 − 2/3 − (nE + nL)/n +

(2/3nE + 1/3nL)/n = (nN − nL)/3n, which is negative if there are more late adopters than
never adopters; otherwise, if nL < nN , all weights are positive. Indeed, some algebra shows

λ11(j, 3) =
nE + 2nN

κ
j ∈ L,

λ11(j, 2) =
nN + 2nL

κ
j ∈ E ,

λ11(j, 3) =
nN − nL

κ
j ∈ E ,

38Since E[Xjt | Wjt] = Xjt ∈ {0, 1}, if eq. (12) held, then the residual X̃jt must be zero (this is true if,
e.g., all units have the same treatment adoption date). But that would generate a multicollinearity issue,
precluding the researcher from including unit and time effects in the regression.

39This example is a special case of the example discussed in Figure 2 of Goodman-Bacon (2021).
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where κ = 2(nEnL + nEnN + nNnL) and λ11(j, t) = 0 otherwise.
Condition (34) is generally quite restrictive. Consider, for instance, a setting in which no

units are treated in the first period and a fraction 1/T of observations adopts the treatment
in period t = 2, . . . , T . Then for the group adopting treatment in period 2, eq. (34) becomes
(3 − T )/2T , which is negative if T ≥ 4. Similarly, condition (34) fails if there exists an
always-treated group, or if everyone is treated in the last period.

Dynamic binary treatment with staggered adoption Next, consider an “event study”
setting in which each unit j starts being treated in period A(j) ∈ {1, 2, . . . , T} ∪ ∞ and
remains treated thereafter, with A(j) = ∞ denoting a unit that is never treated. Thus,
Djt = 1{t > A(j)}, with K = 1. Unlike in previous cases, we allow for dynamic effects
by letting Djt = t − A(j) index the number of periods since the treatment adoption date
(breaking with our usual indexing convention of Djt ≥ 0), assuming no anticipation effect
one period before adoption, and correspondingly normalizing Djt = −1 for the never-treated
group. Xjt then consists of indicators for all leads and lags relative to the adoption date:
Xjt = (1{Djt = −(T − 1)}, . . . ,1{Djt = −2},1{Djt = 0}, . . . ,1{Djt = T − 1})′, with the
indicator for the period just prior to adoption (Djt = −1) excluded. This specification avoids
perfect collinearity when all treatment adoption dates are represented in the data (including
the never-treated group). Sun and Abraham (2021) and Borusyak et al. (2022) study such
“fully-dynamic” event study specifications.

SinceXjt is now a vector withK = 2(T−1), the second contamination bias term in eq. (33)
will generally be present. As such, Sun and Abraham (2021) and Borusyak et al. (2022) study
the potential for contamination across estimates of post- and pre-treatment effects (with the
latter used in conventional pre-trend specification tests). Furthermore, like in the previous
case with static treatment, the own-treatment weights in the first term are potentially negative.
While random treatment timing assumptions may solve the issue of negative own treatment
weights, contamination bias remains a concern even under such assumptions.

To illustrate the potential for contamination bias, consider again the example with early,
late, and never adopters and T = 3, except we now allow the treatment effect to be dynamic.
Let τjts = Yjt(s) − Yjt(−∞), s ∈ {−2, 1, 0, 1} denote the effect on unit j in time period t of
adopting the treatment s periods ago. If s is negative, we interpret this as the anticipation
effect of adopting the treatment −s periods from now. Under our assumptions τjt,−1 = 0, such
that there is no anticipation effect immediately before treatment adoption. To test whether
the two-period-ahead anticipation effect is zero, and whether the effect of the treatment
fades out over time, we let Xjt = (1{Djt = −2},1{Djt = 0},1{Djt = T − 1})′. Thus,
for instance, Xj1 = (1, 0, 0)′ for late adopters while Xj2 = (0, 1, 0)′ for early adopters. Let
τE,ts = n−1

E

∑
j∈E E[τjts] denote the average effect among early adopters, and define τL,ts
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similarly. Then some rather tedious algebra shows that

β =


τL,1,−2

0

τE,3,1

+ λE,0τE,2,0 + λL,0τL,3,0,

where

λE,0 =
1

ζ


3nLnE + nNnE

3nLnE + 2nNnE

−nLnN

 , λL,0 =
1

ζ


−3nLnE − nNnE

3nEnL + 2nNnL

nNnL

 ,

and ζ = 2(3nLnE + nEnN + nLnN ). In other words, the estimand for the two-period-ahead
anticipation effect β1 equals the anticipation effect for late adopters in period 1 (this is the
only group we ever observe two periods before treatment) plus a contamination bias term
coming from the effect of the treatment on impact. Similarly, the estimand for the effect of
the treatment one period since adoption, β3, equals the effect for early adopters in period 3
(this is the only group we ever observe one period after treatment) plus a contamination bias
term coming from the effect of the treatment on impact. The estimand for the effect of the
treatment upon adoption, β0, has no contamination bias, and equals a weighted average of
the effect for early and late adopters. In this example, the own treatment weights are always
positive, but the contamination weights can be large. For instance, with equal-sized groups,
λE,0 = (2/5, 1/2,−1/10)′ and λL,0 = (−2/5, 1/2, 1/10)′, so the contamination weights in the
estimand β1 are almost as large as the own treatment weights for β2.

It is worth noting that if all treated units share a single adoption date then contamination
bias disappears and a TWFE regression recovers a vector of average dynamic treatment effects
for the treated, in analogy to the static case discussed above. To show this result, let us set
A(j) = T1 for the first n1 units, with A(j) = ∞ for the remaining n0 = n−n1 units. Excluding
the indicator just prior to the adoption date, as well as leads and lags that are always zero
for all units, the treatment vector has length T − 1: Xjt = (1{Djt = −(T1− 1)}, . . . ,1{Djt =

−2},1{Djt = 0}, . . . ,1{Djt = T − T1}). For the control units, this vector is always zero. For
the adopters, Xjt = et (the tth unit vector) if t ≤ T1 − 2, Xj,T−1 is zero, and Xjt = et−1 for
t ≥ T1. We may write this compactly as Xjt = et 1{t < T1 − 1}+ et−1 1{t ≥ T1} for j ≤ n1.
Partialling out the unit and time effects therefore yields

X̃jt = (1{j ≤ n1} − n1/n)(et 1{t < T1 − 1}+ et−1 1{t ≥ T1} − ιT−1/T ),

where ιT−1 is a T − 1 vector of ones. Hence,
∑n

j=1

∑n
t=1 X̃jtX̃

′
jt =

n1n0
n

(
IT−1 − ιT−1ι

′
T−1/T

)
.
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By the Woodbury identity, we therefore obtain

Λ(j, t) =
( n∑

j=1

n∑
t=1

X̃jtX̃
′
jt

)−1
X̃jtX

′
jt =

n

n1n0
(IT−1 + ιT−1ι

′
T−1)X̃jtX

′
jt

=
1

n1
(IT−1 + ιT−1ι

′
T−1)(Xjt − ιT−1/T )X

′
jt =

1

n1
XjtX

′
jt.

Hence, by eq. (32), TWFE regression identifies the average treatment for the treated, β =
1
n1

∑n1
j=1(τj1,−(T−1), . . . , τj,T1−2,−2, τjT1,1, . . . , τjT,T−T1). Intuitively, since the contamination

weights sum to zero and there is only one group of adopters, the contamination weights must
be identically zero.

Mover regressions: multiple treatments with multiple transitions. Finally, consider
a “mover regression” in a setting with a static multivalued treatment Djt ∈ {0, . . . ,K} with
multiple transitions of units between treatment states, leading to multiple treatment paths.
We focus on the static treatment case, setting Djt = Djt. This setting has been studied
by Hull (2018b) and de Chaisemartin and D’Haultfœuille (2022). Our Proposition 1 shows
that such specifications can suffer from two distinct sources of bias: own-treatment negative
weighting from multiple transitions and contamination bias from the multiple treatments. As
before the former bias disappears under random treatment timing (as in Athey and Imbens
(2022)), or other assumptions which make eq. (12) hold.

To illustrate this case, consider a setting with T = 3 periods, K = 3 treatments, and three
groups of units, E , L, and N . Units in the first group start out untreated, move to treatment 2
in period 1, and move to treatment 3 in period 3. Units in the second group start in treatment
1, move to being untreated in period 2, and move to treatment 2 in period 3. Units in group
N are never treated. This example is isomorphic to the previous event study example, in
that it leads to the same regression specification and the same eq. (33) characterization of
regression coefficients. Thus, there are no negative own-treatment weights in this example,
but there are potentially large contamination weights depending on the relative group sizes.

Appendix C Details on the Further Applications

This appendix details our procedure for selecting the additional empirical examples in Sec-
tion 5.2. We also discuss the implementation details and provide the full set of results.
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C.1 Article Search Protocol

We scraped the American Economic Association (AEA) website for a list of all published
articles across all AEA journals over 2013–2022. This search included all articles from the
following journals: American Economic Review, American Economic Review: Insights, Amer-
ican Economic Journal: Applied Economics, American Economic Journal: Economic Pol-
icy, American Economic Journal: Macroeconomics, American Economic Journal: Microe-
conomics, Journal of Economic Literature (excluding articles with “review” in the title and
articles labeled as Front Matter, Doctoral Dissertations, and Annotated Listings), Journal
of Economic Perspectives, and AER/AEA Papers and Proceedings (excluding articles with
“report” or “minutes” in the title). We limited this search to articles with online replication
packages which include at least one data file.40

We next filtered articles by two keyword searches of titles, abstracts, and main texts:

• Experiments (keywords: stratified, random, RCT, experiment).

• Racial disparities (keywords: racial/ethnic differences, discrimination, disparities, gaps).

These searches yielded a total of 1,848 experiments and 67 observational studies on race. To
further narrow down experiments, we restricted attention to papers where one of the keywords
appears in the paper’s title, abstract, or associated tweet.

For each search, we then manually reviewed papers in reverse citation order (as measured
by Google Scholar) keeping those which include in the main text a linear regression of some
outcome on multiple treatments or race indicators and controls. We ignored specifications
where a single treatment or race indicator is interacted with some set of fixed effects or controls,
such as event study specifications. We stopped the review when five papers were identified
with such a specification, or when we exhausted all papers in the search.

C.2 Overlap Sample and Propensity Score Variation

For each main specification, we identify a subset of the analysis sample with full treatment
overlap using the following procedure. First, we define a primary strata variable (when not
otherwise obvious from the paper) as the discrete variable with the greatest number of unique
levels. In the experimental applications this is always the randomization strata; in the obser-
vational applications this is the “finest” fixed effect. We then drop observations for the levels
of this variable which do not exhibit all levels of the treatment. Finally, in the remaining
sample, we drop any additional controls which have no within-treatment variation.

40Here “data files” refers to those with any of the following extensions: Stata (‘dta’), Excel (‘xls’ or
‘xlsx’), Matlab (‘mat’), R (‘rdata’, ‘rda’, ‘rds’), HDFS (‘h5‘, ‘hdf5’), Apache (‘parquet’, ‘arrow’),
SAS (‘sas7bdat’), and delimited files (‘csv’, ‘tsv’).
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Wald LM

Statistic (d.f.) p-value Statistic (d.f.) p-value

Project STAR 308.9 (154) 0.000 302.9 (154) 0.000
Benhassine et al. 207.2 (159) 0.006 217.2 (194) 0.121
Cole et al. 22.7 (39) 0.983 70.3 (54) 0.067
de Mel et al. 0.9 (392) 1.000 1.1 (392) 1.000
Drexler et al. 12.4 (14) 0.574 12.6 (14) 0.555
Duflo et al. 109.6 (254) 1.000 94.5 (258) 1.000
Fryer and Levitt 3947.6 (630) 0.000 4164.0 (681) 0.000
Rim et al. 1403.5 (88) 0.000 233.0 (234) 0.506
Weisburst 2350.0 (69) 0.000 223.2 (48) 0.000

Notes: This table summarizes Wald and Lagrange multiplier tests of the null hypothesis
that the coefficients on the controls in a multinomial logit regression of the treatment on
the controls all equal zero. The tests allow for clustering in Benhassine et al., Duflo et
al., Rim et al., and Weisburst, and for heteroskedasticity in the remaining applications.

Table C.1: Tests of Propensity Score Variation

We check for meaningful propensity score variation in each specification with two tests,
summarized in Table C.1. Specifically, we compute the Wald and LM tests of the null hypoth-
esis that, in a multinomial logit regression of the treatment on the controls, all coefficients on
the controls equal zero. The table gives evidence for statistically significant propensity score
variation (at 10% level) in the Project STAR application, two of the additional experimental
applications (Cole et al. and Benhassine et al.), and all three observational studies.

C.3 Full Results

In Table C.2-C.9, we report the estimated effects for each additional application. Panel A of
each table first reports the β̂ estimates from the multiple-treatment regression as reported in
the original paper and corresponding standard errors. We also report the own-treatment effect
component from the decomposition in eq. (23) along with three alternative estimators: the
ATE estimator, the easiest-to-estimate weighted ATE estimator (EW) and the common-weight
(CW) estimator. Panel B reports the difference between β̂ and these 4 alternative estimators.
The β̂, EW and CW estimators are consistent even without overlap. However, if overlap fails
in the full sample, the own-treatment effect component from the decomposition in eq. (23)
may not be identified for all treatments, and the ATE is not identified. If identification of the
decomposition fails for the full treatment vector, we subset to the overlap sample, as described
in Appendix C.2 above, and report the full set of estimates from the different estimators.

57



Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

LCT to fathers 0.074 0.089 0.056 0.067 0.084 0.078 0.076 0.061

(0.016) (0.017) (0.018) (0.019) (0.024) (0.015) (0.020) (0.020)

[0.012] [0.011] [0.014] [0.014] [0.012]

LCT to mothers 0.078 0.067 0.071 0.081 0.075 0.079 0.074 0.068

(0.014) (0.013) (0.017) (0.017) (0.017) (0.014) (0.015) (0.017)

[0.009] [0.011] [0.012] [0.011] [0.012]

CCTs to fathers 0.055 0.062 0.041 0.047 0.038 0.033 0.039 0.038

(0.014) (0.013) (0.018) (0.016) (0.015) (0.014) (0.016) (0.017)

[0.009] [0.012] [0.012] [0.012] [0.012]

CCTs to mothers 0.053 0.045 0.040 0.039 0.033 0.042 0.041 0.040

(0.013) (0.013) (0.018) (0.017) (0.016) (0.015) (0.017) (0.018)

[0.011] [0.013] [0.014] [0.013] [0.013]

Number of controls 57 26
Sample size 11,074 6,996

B. Bias
LCT to fathers −0.016 0.018 −0.018 −0.011 −0.009 0.006

(0.010) (0.018) (0.015) (0.016) (0.010) (0.019)

LCT to mothers 0.012 0.007 0.007 0.002 0.007 0.014

(0.009) (0.016) (0.013) (0.011) (0.010) (0.015)

CCTs to fathers −0.007 0.014 0.009 0.013 0.007 0.009

(0.005) (0.015) (0.009) (0.010) (0.006) (0.015)

CCTs to mothers 0.008 0.013 0.006 −0.003 −0.002 −0.001

(0.007) (0.015) (0.009) (0.009) (0.006) (0.015)

Notes: This table reports estimates from the Benhassine et al. application, as described in Appendix C.3. The regression specification comes
from column 1 of Table 5 in Benhassine et al. (2015). Standard errors clustered by school sector are reported in parentheses. Standard errors
assuming known propensity scores are reported in square brackets.

Table C.2: Full results: Benhassine et al. (2015)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Muslim only 0.160 0.095 0.033 0.001 0.038 −0.012 −0.036 0.010

(0.086) (0.086) (0.094) (0.111) (0.138) (0.109) (0.120) (0.093)

[0.079] [0.098] [0.109] [0.121] [0.104]

Hindu only 0.121 0.058 0.062 0.006 0.075 0.080 0.060 0.076

(0.089) (0.088) (0.101) (0.116) (0.123) (0.106) (0.116) (0.096)

[0.062] [0.100] [0.097] [0.080] [0.092]

Group only 0.239 0.229 0.103 0.107 0.140 0.158 0.093 0.071

(0.097) (0.098) (0.112) (0.115) (0.130) (0.086) (0.106) (0.108)

[0.076] [0.097] [0.082] [0.099] [0.091]

Muslim & Group 0.169 0.092 −0.094 −0.109 −0.075 −0.096 −0.075 −0.088

(0.087) (0.083) (0.079) (0.082) (0.074) (0.080) (0.070) (0.075)

[0.038] [0.076] [0.078] [0.062] [0.072]

Hindu & Group 0.018 −0.052 −0.027 −0.004 0.000 −0.034 0.000 −0.021

(0.080) (0.075) (0.096) (0.094) (0.093) (0.094) (0.087) (0.094)

[0.056] [0.089] [0.090] [0.075] [0.086]

Number of controls 13 3
Sample size 132 73

B. Bias
Muslim only 0.065 0.127 −0.037 0.014 0.038 −0.009

(0.044) (0.073) (0.066) (0.060) (0.061) (0.061)

Hindu only 0.063 0.059 −0.069 −0.075 −0.054 −0.071

(0.050) (0.083) (0.044) (0.085) (0.041) (0.081)

Group only 0.010 0.136 −0.033 −0.050 0.014 0.036

(0.060) (0.103) (0.060) (0.081) (0.064) (0.102)

Muslim & Group 0.077 0.263 −0.033 −0.013 −0.033 −0.021

(0.056) (0.091) (0.048) (0.063) (0.047) (0.060)

Hindu & Group 0.071 0.046 −0.004 0.030 −0.004 0.016

(0.048) (0.080) (0.028) (0.056) (0.036) (0.061)

Notes: This table reports estimates from the Cole et a. application, as described in Appendix C.3. The regression specification
comes from column 6 of Table 7 in Cole et al. (2013). Robust standard errors are reported in parentheses. Standard errors
assuming known propensity scores are reported in square brackets.

Table C.3: Full results: Cole et al. (2013)
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Full sample

A. Estimates β̂ Own ATE EW CW

Info and Reimburse −0.010 −0.010 −0.010 −0.010 −0.010

(0.023) (0.014) (0.007) (0.012) (0.007)

[0.000] [0.000] [0.000]

Rs 10,000 0.134 0.134 0.135 0.134 0.135

(0.034) (0.032) (0.017) (0.027) (0.017)

[0.000] [0.000] [0.000]

Rs 20,000 0.105 0.105 0.104 0.105 0.104

(0.035) (0.030) (0.017) (0.026) (0.017)

[0.008] [0.009] [0.007]

Rs 40,000 0.273 0.273 0.269 0.272 0.270

(0.041) (0.038) (0.020) (0.033) (0.020)

[0.000] [0.000] [0.000]

Number of controls 98
Sample size 520

B. Bias
Info and Reimburse −0.001 −0.001 −0.001 0.000

(0.022) (0.022) (0.020) (0.022)

Rs 10,000 0.000 −0.001 0.000 −0.001

(0.019) (0.029) (0.020) (0.029)

Rs 20,000 0.000 0.000 0.000 0.000

(0.021) (0.030) (0.023) (0.030)

Rs 40,000 0.000 0.004 0.001 0.003

(0.019) (0.035) (0.024) (0.035)

Notes: This table reports all results from the de Mel et al. (2013) application, as described
in Appendix C.3. The regression specification comes from column 2 of Table 2 in de Mel et al.
(2013). Robust standard errors are reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.4: Full results: de Mel et al. (2013)
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Full sample

A. Estimates β̂ Own ATE EW CW

Standard Accounting 0.036 0.038 0.040 0.037 0.040

(0.041) (0.041) (0.040) (0.041) (0.040)

[0.040] [0.040] [0.040]

Rule-of-Thumb 0.109 0.114 0.113 0.112 0.113

(0.039) (0.039) (0.039) (0.039) (0.039)

[0.039] [0.039] [0.039]

Number of controls 7
Sample size 796

B. Bias
Standard Accounting −0.002 −0.004 −0.001 −0.004

(0.004) (0.005) (0.003) (0.005)

Rule-of-Thumb −0.005 −0.004 −0.004 −0.004

(0.004) (0.005) (0.003) (0.005)

Notes: This table reports estimates from the Drexler et al. (2014) application, as described
in Appendix C.3. The regression specification comes from row 2 of Table 2 in Drexler et al.
(2014). Robust standard errors are reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.5: Full results: Drexler et al. (2014)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Educ. subsity −0.031 −0.036 −0.029 −0.024 −0.029 −0.025 −0.032 −0.027

(0.012) (0.011) (0.011) (0.013) (0.012) (0.007) (0.011) (0.010)

[0.000] [0.000] [0.001] [0.001] [0.001]

HIV education 0.003 0.009 0.002 0.000 0.005 0.003 0.005 0.000

(0.011) (0.009) (0.012) (0.011) (0.010) (0.007) (0.010) (0.011)

[0.000] [0.001] [0.001] [0.001] [0.001]

Both −0.016 −0.019 −0.020 −0.012 −0.010 −0.007 −0.009 −0.012

(0.012) (0.010) (0.011) (0.012) (0.010) (0.007) (0.010) (0.010)

[0.000] [0.000] [0.001] [0.001] [0.001]

Number of controls 86 79
Sample size 9,116 8,664

B. Bias
Educ. subsity 0.005 −0.002 0.005 0.001 0.008 0.003

(0.008) (0.012) (0.008) (0.011) (0.007) (0.011)

HIV education −0.006 0.001 −0.005 −0.003 −0.006 0.000

(0.007) (0.011) (0.008) (0.010) (0.007) (0.011)

Both 0.003 0.004 −0.002 −0.005 −0.003 0.000

(0.008) (0.013) (0.008) (0.011) (0.008) (0.012)

Notes: This table reports estimates from the Duflo et al. (2015) application, as described in Appendix C.3. The regression specification comes from
column 1 of Table 2, panel A in Duflo et al. (2015). Standard errors clustered by school reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.6: Full results: Duflo et al. (2015)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Black −0.213 −0.182 −0.193 −0.202 −0.191 −0.150 −0.231 −0.171 −0.195

(0.032) (0.035) (0.034) (0.065) (0.037) (0.041) (0.038) (0.040) (0.059)

[0.031] [0.045] [0.037] [0.035] [0.043]

Hispanic −0.249 −0.257 −0.171 −0.209 −0.212 −0.196 −0.220 −0.171

(0.028) (0.030) (0.046) (0.032) (0.035) (0.033) (0.034) (0.045)

[0.028] [0.039] [0.033] [0.031] [0.039]

Asian −0.294 −0.324 −0.330 −0.275 −0.276 −0.150 −0.283 −0.317

(0.035) (0.038) (0.085) (0.039) (0.043) (0.058) (0.043) (0.082)

[0.033] [0.057] [0.056] [0.036] [0.055]

Other −0.132 −0.116 −0.127 −0.127 −0.104 −0.084 −0.105 −0.105

(0.038) (0.039) (0.046) (0.043) (0.045) (0.035) (0.044) (0.047)

[0.029] [0.035] [0.034] [0.031] [0.035]

Number of controls 176 127
Sample size 8,806 6,623

B. Bias
Black −0.031 −0.020 −0.011 −0.042 0.040 −0.020 0.004

(0.016) (0.013) (0.056) (0.017) (0.028) (0.014) (0.048)

Hispanic 0.008 −0.077 0.003 −0.013 0.011 −0.038

(0.009) (0.038) (0.013) (0.021) (0.011) (0.035)

Asian 0.030 0.036 0.001 −0.124 0.009 0.043

(0.018) (0.074) (0.018) (0.057) (0.016) (0.068)

Other −0.015 −0.005 −0.023 −0.043 −0.023 −0.022

(0.013) (0.048) (0.015) (0.038) (0.014) (0.049)

Notes: This table reports estimates from the Fryer and Levitt (2013) application, as described in Appendix C.3. The regression
specification comes from column 4 of Table 3 in Fryer and Levitt (2013). Robust standard errors are reported in parentheses.
Standard errors assuming known propensity scores are reported in square brackets.

Table C.7: Full results: Fryer and Levitt (2013)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Black −4.059 −3.907 −3.786 −4.441 −3.969 8.071 −3.199 −3.266

(1.107) (1.210) (1.597) (1.149) (1.059) (11.922) (1.039) (1.403)

[0.393] [0.747] [3.991] [0.537] [0.628]

Hispanic −1.119 −0.837 1.290 −0.658 −0.908 2.927 −0.879 −1.099

(0.731) (0.698) (3.949) (1.603) (1.461) (3.403) (1.446) (2.460)

[0.142] [0.637] [2.150] [0.305] [0.620]

Asian −2.536 −2.117 −4.375 −3.383 −3.110 −8.439 −3.633 −3.685

(0.978) (1.206) (2.896) (1.440) (1.114) (3.606) (0.930) (1.824)

[0.314] [0.384] [1.685] [0.351] [0.638]

Number of controls 268 35
Sample size 4,037 620

B. Bias
Black −0.152 −0.274 −0.472 −12.513 −1.243 −1.175

(0.406) (1.902) (1.117) (12.089) (1.277) (1.210)

Hispanic −0.282 −2.409 0.250 −3.584 0.222 0.442

(0.212) (3.813) (0.446) (3.269) (0.344) (1.154)

Asian −0.418 1.839 −0.273 5.056 0.249 0.302

(0.632) (2.804) (0.713) (3.259) (0.842) (1.445)

Notes: This table reports estimates from the Rim et al. (2020) application, as described in Appendix C.3. The regression specification comes
from column 3 of Table 2 in Rim et al. (2020). Standard errors clustered by cohort are reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.8: Full results: Rim et al. (2020)
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Full sample

A. Estimates β̂ Own ATE EW CW

Black 0.172 −0.037 0.342 0.109 0.246

(0.274) (0.305) (0.396) (0.267) (0.292)

[0.323] [0.152] [0.178]

Hispanic 0.043 −0.754 −0.330 −0.496 −0.466

(0.394) (0.404) (0.395) (0.341) (0.289)

[0.312] [0.221] [0.169]

Other 1.130 1.130 0.223 1.244 0.106

(0.652) (0.654) (0.622) (0.679) (0.712)

[0.394] [0.347] [0.566]

Number of controls 256
Sample size 7,488

B. Bias
Black 0.209 −0.169 0.063 −0.074

(0.218) (0.337) (0.190) (0.264)

Hispanic 0.797 0.373 0.539 0.508

(0.356) (0.390) (0.310) (0.330)

Other 0.001 0.907 −0.113 1.025

(0.125) (0.340) (0.120) (0.578)

Notes: This table reports all results from the Weisburst (2019) application, as described in
Appendix C.3. The regression specification comes from Table 2, panel A in Weisburst (2019).
Standard errors clustered by police beat are reported in parentheses. Standard errors that
assume the propensity scores are known are reported in square brackets.

Table C.9: Full results: Weisburst (2019)
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Appendix D Additional Figures

Figure D.1: Regression of Small Classroom Treatment on Class Aide Treatment

Note: This figure plots values of the demeaned class aide treatment (X̃2i, the x-axis) against values of the
demeaned small classroom treatment (X̃1i, the y-axis) in our numerical example from Section 2.3. The size
of the points corresponds to the density of observations. The solid red and blue lines mark the within-school
regression of the two residualized treatments, while the dashed black line is the overall regression line. The
residuals from this line give

≈
Xi1.
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Correlation: 0.10 Correlation: −0.13

A: Small class treatment B: Aide treatment
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Figure D.2: Project STAR contamination weights.

Notes: This figure shows correlations between estimated school-specific treatment effects and contamination
weights. Panel A depicts the correlation between the estimated teaching aide treatment effects by school
against the estimated contamination weight for the small class estimate. Panel B gives the correlation between
the estimated small class treatment effects by school against the estimated contamination weight for the
teaching aide estimate. Correlations are reported on each panel. The size of the points is proportional to the
number of students enrolled in each school.
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Figure D.3: Project STAR treatment weights

Notes: This figure shows correlations between estimated school-specific treatment effects and the weights used
by different estimators. Panel A gives the correlations for the small class treatment, and Panel B gives them
for the teaching aide treatment. The first row plots the own treatment weights from the contamination bias
decomposition in eq. (23). The second row gives plots the EW scheme from Corollary 1, and the third row
gives the CW scheme from Corollary 2. Correlations are reported on each panel. The size of the points is
proportional to the number of students enrolled in each school.
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