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APPLIED NONPARAMETRIC INSTRUMENTAL
VARIABLES ESTIMATION1

BY JOEL L. HOROWITZ

Instrumental variables are widely used in applied econometrics to achieve identifi-
cation and carry out estimation and inference in models that contain endogenous ex-
planatory variables. In most applications, the function of interest (e.g., an Engel curve
or demand function) is assumed to be known up to finitely many parameters (e.g., a lin-
ear model), and instrumental variables are used to identify and estimate these para-
meters. However, linear and other finite-dimensional parametric models make strong
assumptions about the population being modeled that are rarely if ever justified by eco-
nomic theory or other a priori reasoning and can lead to seriously erroneous conclu-
sions if they are incorrect. This paper explores what can be learned when the function of
interest is identified through an instrumental variable but is not assumed to be known
up to finitely many parameters. The paper explains the differences between paramet-
ric and nonparametric estimators that are important for applied research, describes an
easily implemented nonparametric instrumental variables estimator, and presents em-
pirical examples in which nonparametric methods lead to substantive conclusions that
are quite different from those obtained using standard, parametric estimators.

KEYWORDS: Nonparametric estimation, instrumental variable, ill-posed inverse
problem, endogenous variable, eigenvalues, linear operator.

1. INTRODUCTION

INSTRUMENTAL VARIABLES are widely used in applied econometrics to achieve
identification and carry out estimation and inference in models that contain
endogenous explanatory variables. In most applications, the function of in-
terest (e.g., an Engel curve or demand function) is assumed to be known up
to finitely many parameters (e.g., a linear model), and instrumental variables
are used to identify and estimate these parameters. However, linear and other
finite-dimensional parametric models make strong assumptions about the pop-
ulation being modeled that are rarely if ever justified by economic theory or
other a priori reasoning and can lead to seriously erroneous conclusions if they
are incorrect. This paper explores what can be learned when the function of
interest is identified through an instrumental variable but is not assumed to be
known up to finitely many parameters.

Specifically, this paper is about estimating the unknown function g in the
model

Y = g(X)+U; E(U |W =w)= 0(1.1)
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for all w or, equivalently,

E[Y − g(X)|W =w] = 0�(1.2)

In this model, g is a function that satisfies regularity conditions but is other-
wise unknown, Y is a scalar dependent variable, X is an explanatory variable
or vector that may be correlated with U (that is, X may be endogenous), W is
an instrument forX , and U is an unobserved random variable. For example, if
Y is a household’s expenditure share on a good or service and X is the house-
hold’s total expenditure, then g is an Engel curve. If income from wages and
salaries is not influenced by household budgeting decisions, then the household
head’s total earnings from wages and salaries can be used as an instrument,W ,
forX (Blundell, Chen, and Kristensen (2007), Blundell and Horowitz (2007)).
The data used to estimate g are an independent random sample of (Y�X�W ).

If some explanatory variables are exogenous, it is convenient to use notation
that distinguishes between endogenous and exogenous explanatory variables.
We write the model as

Y = g(X�Z)+U� E(U |W =w�Z = z)= 0(1.3)

or

E[Y − g(X�Z)|W =w�Z = z] = 0(1.4)

for all w and z. In this model,X denotes the explanatory variables that may be
endogenous, Z denotes the exogenous explanatory variables, and W is an in-
strument forX . The data are an independent random sample of (Y�X�W �Z).

Methods for estimating g in (1.1)–(1.2) and, to a lesser extent, (1.3)–(1.4)
have become available recently but have not yet been used much in applied re-
search. This paper explores the usefulness of nonparametric instrumental vari-
ables (IV) estimators for applied econometric research. Among other things,
the paper pursues the following points:

(i) It explains that nonparametric and parametric estimators differ in ways
that are important for applied research. Nonparametric estimation is not just
a flexible form of parametric estimation.

(ii) It presents an estimator of g in (1.1)–(1.2) that is as easy to compute
as an IV estimator of a linear model. Thus, computational complexity is not
a barrier to the use of nonparametric IV estimators in applications.

(iii) It presents empirical examples in which nonparametric methods lead
to substantive conclusions that are quite different from those obtained using
standard, parametric estimators.

Some characteristics of nonparametric IV methods may be unattractive to
applied researchers. One of these is that nonparametric IV estimators can be
very imprecise. This is not a defect of the estimators. Rather, it reflects the
fact that the data often contain little information about g when it is identified
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APPLIED NONPARAMETRIC IV ESTIMATION 349

through instrumental variables. When this happens, applied researchers may
prefer to add “information” in the form of a priori assumptions about the func-
tional form of g so as to increase the precision of the estimates. For example,
g may be assumed to be a linear or quadratic function. However, the improve-
ment in apparent precision obtained from a parametric model carries the risk
of misleading inference if the model is misspecified. There is no assurance that
a parametric model that is chosen for analytic or computational convenience
or because of frequent use in the literature contains the true g or even a good
approximation to it. Moreover, neither economic theory nor econometric pro-
cedures can lead one reliably to a correct parametric specification. Depending
on the substantive meaning of g (e.g., a demand function), economic theory
may provide information about its shape (e.g., convex, concave, monotonic) or
smoothness, but theory rarely if ever provides a parametric model. The risk of
specification error cannot be eliminated through specification testing. Failure
to reject a parametric model in a specification test does not necessarily imply
that the model is correctly specified. In fact, a specification test may accept
several parametric models that yield different substantive conclusions. Non-
parametric estimation reveals the information that is available from the data
as opposed to functional form assumptions. It enables one to assess the im-
portance of functional form assumptions in drawing substantive conclusions
from a parametric model. Even if an applied researcher ultimately decides to
use a parametric model, he or she should be aware of the conclusions that are
justified under the weak assumptions of nonparametric estimation and of how
these conclusions may differ from those obtained from the parametric model.

Another possible obstacle to the use of nonparametric IV in applications is
that certain methodological problems are not yet solved. Some of these prob-
lems are outlined later in this paper. It is likely that the problems will be solved
in the near future and will not present serious long-run obstacles to applied
nonparametric IV estimation.

1.1. Summary of Recent Literature

Nonparametric estimation of g in (1.1)–(1.2) when X and W are continu-
ously distributed has been the object of much recent research. Several esti-
mators are now available, and much is known about the properties of some
of them. The available estimators include kernel-based estimators (Darolles,
Florens, and Renault (2006), Hall and Horowitz (2005)) and series or sieve es-
timators (Newey and Powell (2003), Blundell, Chen, and Kristensen (2007)).
The estimator of Hall and Horowitz (2005) also applies to model (1.3)–(1.4).
The estimators of Hall and Horowitz (2005) and Blundell, Chen, and Kris-
tensen (2007) converge in probability at the fastest possible rates under their
assumptions (Hall and Horowitz (2005), Chen and Reiss (2011)), so these esti-
mators are the best possible in that sense. Horowitz (2007) gave conditions un-
der which the Hall–Horowitz (2005) estimator is asymptotically normally dis-
tributed. Horowitz and Lee (2010) showed how to obtain uniform confidence
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350 JOEL L. HOROWITZ

bands for g in (1.1)–(1.2). Horowitz (2006) showed how to test a paramet-
ric specification for g (e.g., the hypothesis that g is a linear function) against
a nonparametric alternative, and Blundell and Horowitz (2007) showed how
to test the hypothesis that X is exogenous. Horowitz (2011b) showed how to
test the hypothesis that a function g satisfying (1.1)–(1.2) exists.

There are also estimators for a quantile version of (1.1)–(1.2) with contin-
uously distributed X and W (Chen and Pouzo (2008), Chernozhukov, Im-
bens, and Newey (2007), Horowitz and Lee (2007)). In the quantile model, the
conditional moment restriction E(U |W = w)= 0 is replaced by a conditional
quantile restriction. The resulting model is

Y = g(X)+U; P(U ≤ 0|W =w)= q(1.5)

for some q such that 0 < q < 1. Horowitz and Lee (2007) showed that this
model subsumes the nonseparable model

Y = g(X�U)�(1.6)

where U is independent of W and g is strictly increasing in its second ar-
gument. Chernozhukov and Hansen (2005) and Chernozhukov, Imbens, and
Newey (2007) gave conditions under which g is identified in (1.5) or (1.6).

When X and W are discretely distributed, as happens in many applica-
tions, g is not identified except in special cases. However, informative bounds
on g may be identified, even if g is not identified. Manski and Pepper (2000)
and Chesher (2004, 2005) gave conditions under which informative identified
bounds are available.

1.2. The Control Function Model

The control function model is an alternative formulation of the nonpara-
metric IV estimation problem that is nonnested with the formulation of equa-
tions (1.2) and (1.3). In the control function model,

Y = g(X)+U(1.7)

and

X = h(W )+ V �(1.8)

where g and h are unknown functions,

E(V |W =w)= 0(1.9)

for all w, and

E(U |X = x�V = v)=E(U |V = v)(1.10)

for all x and v. Assuming that the mean of X conditional on W exists, (1.8)
and (1.9) can always be made to hold by setting h(w) = E(X|W = w). Iden-
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APPLIED NONPARAMETRIC IV ESTIMATION 351

tification in the control function approach comes from (1.10). It follows from
(1.7) and (1.10) that

E(Y |X = x�V = v)= g(x)+ k(v)�(1.11)

where g and k are unknown functions. If V were observable, g could be esti-
mated by using any of a variety of estimators for nonparametric additive mod-
els. See, for example, Horowitz (2009, Chap. 3). Although V is not observable,
it can be estimated consistently by the residuals from nonparametric estima-
tion of h in (1.8). The estimated V can be used in place of the true one for
the purposes of estimating g from (1.11). Newey, Powell, and Vella (1999)
presented an estimator and gave conditions under which it is consistent and
achieves the optimal nonparametric rate of convergence. Further discussion of
the control function approach is available in Pinkse (2000) and Blundell and
Powell (2003).

Models (1.1)–(1.2) and (1.7)–(1.10) are nonnested. It is possible for (1.2) to
be satisfied but not (1.10) and for (1.10) to be satisfied but not (1.2). Therefore,
neither model is more general than the other. Blundell and Powell (2003) and
Heckman and Vytlacil (2007) discussed the relative merits of the two models
in various settings. At present, there is no statistical procedure for distinguish-
ing empirically between the two models. This paper is concerned mainly with
estimation of g in models (1.1)–(1.2) and (1.3)–(1.4). A version of the control
function approach will be discussed in Section 6.1 in connection with models in
which X and W are discrete. In other respects, the control function approach
will not be discussed further.

The remainder of the paper is organized as follows. Section 2 deals with the
question of whether there is any important difference between a nonparamet-
ric estimator of g and a sufficiently flexible parametric one. Section 3 sum-
marizes the theory of nonparametric estimation of g when X and W are con-
tinuous random variables. Section 4 presents a nonparametric estimator that
is easy to compute. Section 5 presents empirical examples that illustrate the
methods and conclusions of Sections 2–4. Section 6 discusses identification
and, when possible, estimation of g when X and W are discrete random vari-
ables. Section 7 presents concluding comments. The exposition in this paper
is informal. The emphasis is on conveying ideas and important results, not on
technical details. Proofs and other details of mathematical rigor are available
in the cited reference material. Data and programs are provided in the Supple-
mental Material (Horowitz (2011a)).

2. THE DIFFERENCE BETWEEN PARAMETRIC AND NONPARAMETRIC METHODS

If g in (1.1) were known up to a finite-dimensional parameter θ (that
is, g(x) = G(x�θ) for all x, some known function G, and some finite-
dimensional θ), then n−1/2-consistent, asymptotically normal estimators of θ
and g could be obtained by using the generalized method of moments (GMM)
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352 JOEL L. HOROWITZ

(Hansen (1982)). When g is unknown, one can consider approximating it by
a finite-dimensional parametric model, G(x�θ), for some suitable G.

It is easy to find functions G that yield good approximations. Engel curves,
demand functions, and many other functions that are important in economics
are likely to be smooth. They are not likely to be wiggly or discontinuous.
A smooth function on a compact interval can be approximated arbitrarily well
by a polynomial of sufficiently high degree. Thus, for example, if X is a scalar
random variable with compact support, we can write

g(x)≈ θ0 + θ1x+ · · · + θKxK(2.1)

≡G1(x�θ)�

where K > 0 is an integer, θ0� � � � � θK are constants, and θ= (θ0� � � � � θK)
′. The

approximation error can be made arbitrarily small by making K sufficiently
large. Alternatively, one can use a set of basis functions {ψj : j = 1�2� � � �}, such
as trigonometric functions, orthogonal polynomials, or splines, in place of pow-
ers of x. In this case,

g(x)≈ θ1ψ1(x)+ · · · + θKψK(x)(2.2)

=G2(x�θ)�

Again, the approximation error can be made arbitrarily small by making K
sufficiently large. The parameter vector θ in either (2.1) or (2.2) can be esti-
mated by GMM based on the approximate moment condition E[G(X�θ)|W =
w)] = 0. The parameter estimates are n−1/2-consistent and asymptotically nor-
mal. As will be discussed further in Section 3, nonparametric series estimators
of g are based on estimating θ inG2 for some set of basis functions {ψj}. There-
fore, it is possible for parametric and nonparametric estimates to be identical.
This makes it reasonable to ask whether there is any practical difference be-
tween a nonparametric estimator and a sufficiently flexible parametric one.

The answer is that parametric and nonparametric estimators lead to dif-
ferent inference (confidence intervals and hypothesis tests). This is because
inference based on a parametric model treats the model as if it were exact,
whereas nonparametric estimation treats it as an approximation that depends
on the size of the sample. Specifically, in nonparametric estimation, the “size”
of the model (e.g., K in (2.2)) is larger with large samples than with small
ones. Consequently, the approximation error is smaller with large samples than
with small ones. In contrast, the size (or dimension) of a parametric model
and a parametric model’s approximation error are fixed and independent of
the sample. Although it is possible to find a parametric model that coincides
with a nonparametric model, a given parametric model coincides with a non-
parametric model only for a narrow range of sample sizes. This makes infer-
ence based on parametric and nonparametric models different because the two
models are different except when the sample size is in a small range that de-
pends on the details of the estimation problem. As an analogy, it may be useful
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APPLIED NONPARAMETRIC IV ESTIMATION 353

to consider the difference between estimates based on random and arbitrary
samples. One can always find an arbitrary sample that coincides with a random
sample, but a given arbitrary sample is unlikely to coincide with a random one.
Therefore, estimates obtained from a given arbitrary sample and a random
sample are different except in the unlikely event that the two coincide.

Because parametric estimation assumes a fixed model that does not depend
on the sample size, a parametric estimate tends to give a misleading indication
of estimation precision unless the parametric model is really correct. Paramet-
ric methods typically indicate that the estimates are more precise than they
really are. Often the assumptions of a highly restrictive parametric model are
much more “informative” than the data are. Consequently, conclusions that
are supported by the parametric model may not be supported by nonparamet-
ric methods. This is illustrated by empirical examples that are presented in
Sections 5 and 6.

3. NONPARAMETRIC IV ESTIMATION WHEN X AND W ARE
CONTINUOUSLY DISTRIBUTED

This section summarizes the theory of nonparametric IV estimation and
explains why nonparametric IV estimation presents problems that are not
present in parametric IV estimation. The discussion is concerned with estimat-
ing g in model (1.1)–(1.2) when X and W are continuously distributed scalars.
AllowingX andW to be vectors complicates the notation but does not change
the essential ideas or results, though it may reduce estimation precision owing
to curse-of-dimensionality effects. It is assumed that the support of (X�W ) is
contained in [0�1]2. This assumption can always be satisfied by, if necessary,
carrying out monotone increasing transformations of X and W . For example,
one can replace X and W by �(X) and �(W ), where � is the normal distrib-
ution function.

3.1. Identification

We begin by deriving a mapping from the population distribution of
(Y�X�W ) to g. This mapping identifies g and provides the starting point for
estimation of g.

Let fX|W denote the probability density function ofX conditional on W . Let
fXW and fW , respectively, denote the probability density functions of (X�W )
and W . Note that fX|W = fXW /fW . Model (1.1)–(1.2) can be written

E(Y |W =w)= E[g(X)|W =w](3.1)

=
∫ 1

0
g(x)fX|W (x�w)dx

=
∫ 1

0
g(x)

fXW (x�w)

fW (w)
dx�
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354 JOEL L. HOROWITZ

Therefore,

E(Y |W =w)fW (w)=
∫ 1

0
g(x)fXW (x�w)dx(3.2)

and

E(Y |W =w)fXW (z�w)fW (w)=
∫ 1

0
g(x)fXW (x�w)fXW (z�w)dx(3.3)

for any z ∈ [0�1]. Define

t(x� z)=
∫ 1

0
fXW (x�w)fXW (z�w)dw�

Then integrating with respect to w on both sides of (3.3) yields

E[YfXW (z�W )] =
∫ 1

0
g(x)t(x� z)dx(3.4)

for any z ∈ [0�1], where the expectation on the left-hand side is over the dis-
tribution of (Y�W ). Equation (3.4) shows that g is the solution to an integral
equation. The integral equation is called a Fredholm equation of the first kind
in honor of the Swedish mathematician Erik Ivar Fredholm.

Now define the operator (that is, mapping from one set of functions to an-
other) T by

(Th)(z)=
∫ 1

0
h(x)t(x� z)dx�

Define r(z)= E[YfXW (z�W )]. Then (3.4) is equivalent to the operator equa-
tion

r(z)= (Tg)(z)�(3.5)

It may be useful to think of T as the infinite-dimensional generalization of
a matrix and of (3.5) as the infinite-dimensional generalization of a system of
simultaneous equations. Assume that T is nonsingular or one-to-one.2 That
is, if Th = 0, then h = 0 almost everywhere. Then T has an inverse and the
solution to (3.5) is

g(x)= (T−1r)(x)�(3.6)

2Blundell, Chen, and Kristensen (2007) gave examples of distributions that satisfy the nonsin-
gularity condition. There has been little research on what can be learned about g when X and W
are continuously distributed and T is singular. Section 6 reviews research on what can be learned
about g when X and W are discrete and the discrete analog of T is singular.
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APPLIED NONPARAMETRIC IV ESTIMATION 355

Equation (3.6) is the desired mapping from the population distribution of
(Y�X�W ) to g. Equation (3.6) identifies g and can be used to form estima-
tors of g.

3.2. Background From Functional Analysis

The properties of estimators of g depend on those of T .3 Stating the relevant
properties of T requires the use of concepts and results from functional analy-
sis. These are infinite-dimensional analogs of similar concepts and results for
finite-dimensional vectors and matrices, and will be stated briefly here. Math-
ematical details can be found in textbooks on functional analysis, such as Con-
way (1990) and Liusternik and Sobolev (1961).

Define the function space L2[0�1] as the set of functions that are square
integrable on [0�1]. That is,

L2[0�1] =
{
h :

∫ 1

0
h(x)2 dx <∞

}
�

Define the norm, ‖h‖, of any function h ∈L2[0�1] by

‖h‖ =
[∫ 1

0
h(x)2 dx

]1/2

�

For any functions h1�h2 ∈L2[0�1], define the inner product

〈h1�h2〉 =
∫ 1

0
h1(x)h2(x)dx�

Let {λj�φj : j = 1�2� � � �} denote the eigenvalues and eigenvectors of T . These
are the solutions to the equation

Tφj = λjφj� j = 1�2� � � � �

and are analogous to the eigenvalues and eigenvectors of a real, symmetric
matrix. T is always positive semidefinite or definite and is assumed to be non-
singular, so λj > 0 for all j = 1�2� � � � � Sort the eigenvalues and eigenvectors so
that λ1 ≥ λ2 ≥ · · ·> 0.

Assume that∫ 1

0

∫ 1

0
fXW (x�w)

2 dxdw <∞�

3The investigation of properties of estimators of g can also be based on (3.1) or (3.2). The
conclusions are the same as those obtained using (3.4)–(3.6), and the necessary mathematical
tools are simpler with (3.4)–(3.6). If X is exogenous and W =X , then fXW (x�w)= fW (w)δ(x−
w), where δ is the Dirac delta function. The delta function in fXW changes the properties of T ,
and the results of Sections 3 and 4 of this paper no longer apply.
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356 JOEL L. HOROWITZ

Then eigenvalues and eigenvectors of T have the following properties:
(i) Zero is a limit point of the eigenvalues. Therefore, there are infinitely

many λj ’s within any neighborhood of zero. Zero is the only limit point of the
eigenvalues.

(ii) The eigenvectors are orthonormal. That is, 〈φj�φk〉 = 1 if j = k and 0
otherwise.

(iii) The eigenvectors are a basis for L2[0�1]. That is, any function h ∈
L2[0�1] has the series representation

h(x)=
∞∑
j=1

hjφj(x)�

where hj = 〈h�φj〉. Moreover,

‖h‖2 =
∞∑
j=1

h2
j �

(iv) For any h ∈L2[0�1],

(Th)(x)=
∞∑
j=1

λjhjφj(x)�

In addition, if

∞∑
j=1

(
hj

λj

)2

<∞�

then

(T−1h)(x)=
∞∑
j=1

hj

λj
φj(x)�

Because of property (iii), we can write

r(z)=
∞∑
j=1

rjφj(z)

and

g(x)=
∞∑
j=1

gjφj(x)�
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APPLIED NONPARAMETRIC IV ESTIMATION 357

where rj = 〈r�φj〉 and gj = 〈g�φj〉 for each j. The coefficients rj and gj are
called generalized Fourier coefficients of r and g, respectively. Because of
property (iv),

(T−1r)(x)=
∞∑
j=1

rj

λj
φj(x)(3.7)

if
∞∑
j=1

(
rj

λj

)2

<∞�(3.8)

Combining (3.6) and (3.7) yields the result that

g(x)=
∞∑
j=1

rj

λj
φj(x)(3.9)

if (3.8) holds. Equation (3.9) provides a representation of g that can be used
to investigate the properties of estimators.

3.3. The Ill-Posed Inverse Problem

The key fact about (3.9) that makes nonparametric IV different from para-
metric IV is that because λj → 0 as j → ∞� g is not a continuous functional
of r. To see this, let r1 and r2 be functions in L2[0�1] with the representations

r1(x)=
∞∑
j=1

r1jφj(x)

and

r2(x)=
∞∑
j=1

r2jφj(x)�

Define

g1(x)=
∞∑
j=1

r1j

λj
φj(x)

and

g2(x)=
∞∑
j=1

r2j

λj
φj(x)�
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358 JOEL L. HOROWITZ

Then

‖r2 − r1‖ =
[ ∞∑
j=1

(r1j − r2j)2

]1/2

and

‖g2 − g1‖ =
[ ∞∑
j=1

(
r1j − r2j
λj

)2
]1/2

�

Given any ε > 0, no matter how small, and anyM > 0, no matter how large, it is
possible to choose the r1j ’s and r2j ’s such that ‖r1 − r2‖< ε and ‖g1 − g2‖>M .
Therefore, an arbitrarily small change in r in (3.5) can produce an arbitrar-
ily large change in g. This phenomenon is called the ill-posed inverse problem.
The ill-posed inverse problem also arises in deconvolution and nonparametric
density estimation (Härdle and Linton (1994), Horowitz (2009)).

The ill-posed inverse problem has important consequences for how much
information the data contain about g and how accurately g can be estimated.
To see why, denote the data by {Yi�Xi�Wi : i= 1� � � � � n}, where n is the sample
size. Suppose that fXW and, therefore, T and the λj ’s are known. Then the
rj ’s are the only unknown quantities on the right-hand side of (3.9). It follows
from (3.4) and rj = 〈r�φj〉 that

rj =E
[
Y

∫ 1

0
fXW (z�W )φj(z)dz

]
� j = 1�2� � � � �

Therefore, rj is a population moment and can be estimated n−1/2 consistently
by the sample analog

r̂j = n−1
n∑
i=1

Yi

∫ 1

0
fXW (z�Wi)φj(z)dz� j = 1�2� � � � �

The generalized Fourier coefficients of g are estimated consistently and with-
out bias by

ĝj = r̂j

λj
�

Because λj → 0 as n→ ∞, random sampling errors in r̂j can have large effects
on ĝj when j is large. Indeed, Var(ĝj)= Var(r̂j)/λ2

j → ∞ as j → ∞, except in
special cases. As a consequence, except in special cases, only low-order gen-
eralized Fourier coefficients of g can be estimated with useful precision with
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APPLIED NONPARAMETRIC IV ESTIMATION 359

samples of practical size. Thus, the ill-posed inverse problem limits what can
be learned about g.

The following example illustrates the problem.

EXAMPLE 3.1—The Ill-Posed Inverse Problem: Let g(x)= x. Let

fXW (x�w)=
∞∑
j=1

λ1/2
j φj(x)φj(w)� 0 ≤ x�w≤ 1�(3.10)

where φ1(z)= 1�φj(z)= √
2 cos[(j− 1)πz] for j ≥ 2�λ1 = 1, and λj = 0�2(j−

1)−4 for j ≥ 2. With this fXW , the marginal distributions of X and W are uni-
form on [0�1], but X and W are not independent of one another. The gener-
alized Fourier coefficients of g are g1 = 0�5 and

gj =
√

2[(−1)j−1 − 1][π(j − 1)]−2� j ≥ 2�

The reduced form model is

Y = E[g(X)|W ] + V

=
∞∑
j=1

gjE[φj(X)|W ] + V �

where V is a random variable satisfying E(V |W =w)= 0. Now

E[φj(X)|W ] =
∫ 1

0
φj(x)

fXW (x�W )

fW (W )
dx

=
∫ 1

0
φj(x)fXW (x�W )dx�

where the last line uses the fact that the marginal distribution of W is U[0�1].
By (3.10),

∫ 1

0
φj(x)fXW (x�W )dx= λ1/2

j φj(W )�

Therefore, the reduced-form model can be written

Y =
∞∑
j=1

cjφj(W )+ V �

where cj = gjλ1/2
j .
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360 JOEL L. HOROWITZ

FIGURE 1.——Illustration of the ill-posed inverse problem. The solid line with circles is the ab-
solute values of the generalized Fourier coefficients; the dashed line with triangles is the standard
deviation of maximum likelihood estimates of these coefficients.

Now let V ∼ N(0�0�01) independently of W . With data {Yi�Xi�Wi : i =
1� � � � � n}, the maximum likelihood (and asymptotically efficient) estimator of
the cj ’s can be obtained by applying ordinary least squares to

Yi =
∞∑
j=1

cjφj(Wi)+ Vi; i= 1� � � � � n�

Let ĉj (j = 1�2� � � �) denote the resulting estimates. The maximum likelihood
estimator of gj is ĉj/λ

1/2
j .

Figure 1 shows a graph of |gj| and the standard deviation of ĝj for n =
10�000. Even with this large sample, only the first four generalized Fourier
coefficients are estimated with useful precision. The standard deviation of ĝj is
much larger than |gj| when j > 4.

The result of Example 3.1 is very general. Except in special cases, only low-
order generalized Fourier coefficients of g can be estimated with useful pre-
cision with samples of practical size. This is a consequence of the ill-posed
inverse problem and is a characteristic of the estimation problem, not a defect
of the estimation method. When identification is through the moment condi-
tion (1.2), the data contain little information about the higher-order general-
ized Fourier coefficients of g. Therefore, to obtain a useful estimator of g, one
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APPLIED NONPARAMETRIC IV ESTIMATION 361

must find a way to avoid the need for estimating higher-order coefficients. Pro-
cedures for doing this are called regularization. They amount to modifying T in
a suitable way. The amount of modification is controlled by a parameter (the
regularization parameter) and decreases as n→ ∞ to ensure consistent esti-
mation. Several regularization methods are available. See Engl, Hanke, and
Neubauer (1996), Kress (1999), and Carrasco, Florens, and Renault (2007).
In this paper, regularization will be carried out by replacing T with a finite-
dimensional approximation. The method for doing this is described in Sec-
tion 4. Section 3.4 provides the mathematical rationale for the method.

3.4. Avoiding Estimation of Higher-Order Generalized Fourier Coefficients:
The Role of Smoothness

One way to avoid the need to estimate higher-order generalized Fourier
coefficients is to specify a low-dimensional parametric model for g. That is,
g(x) = G(x�θ) for some known function G and low-dimensional θ. A para-
metric model, in effect, specifies high-order coefficients in terms of a few low-
order ones, so only a few low-order ones have to be estimated. But the as-
sumption that g has a known parametric form is strong and leads to incorrect
inference unless the parametric model is exact or a good approximation to the
true g. The parametric model provides no information about the accuracy of
the approximation or the effect of approximation error on inference. There-
fore, it is useful to ask whether we can make an assumption that is weaker than
parametric modeling but provides asymptotically correct inference.

The assumption that g is smooth in the sense of having one or more deriva-
tives achieves this goal. Assuming smoothness is usually weaker than assuming
that g belongs to a known parametric family, because most parametric fam-
ilies used in applied research are subsets of the class of smooth functions.
The smoothness assumption is likely to be satisfied by many functions that
are important in applied econometrics, including demand functions and Engel
curves, so smoothness is not excessively restrictive in a wide variety of appli-
cations. Moreover, as will be explained, smoothness provides enough infor-
mation about higher-order generalized Fourier coefficients to make consistent
estimation of g and asymptotically correct inference possible.

We first provide a formal definition of the smoothness concept that will
be used for estimating g. Let Dkg(x) = dkg(x)/dxk for k = 0�1�2� � � � with
D0g(x)= g(x). Define g to have smoothness s if

‖g‖2
s ≡

s∑
j=0

‖Djg‖2 ≤ C2
0

for some finite, positive constant C0. In other words, g has smoothness s if it
has s square-integrable derivatives.
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362 JOEL L. HOROWITZ

To see why smoothness is useful for estimating g, let {ψj} be a basis for
L2[0�1]. The ψj ’s need not be eigenfunctions of T . If g has smoothness s > 0
and {ψj} is any of a variety of bases that includes trigonometric functions, or-
thogonal polynomials, and splines (see, e.g., Chen (2007)), then there are co-
efficients {gj} and a constant C <∞ not depending on g such that∥∥∥∥∥g−

J∑
j=1

gjψj

∥∥∥∥∥ ≤ CJ−s(3.11)

for each J = 1�2� � � � � Therefore, smoothness provides an upper bound on the
error of a truncated series approximation to g. This bound is sufficient to per-
mit consistent estimation of g and asymptotically correct inference. In other
words, smoothness makes nonparametric estimation and inference possible.

Although smoothness makes nonparametric estimation of g possible, it does
not eliminate the need for judgment in estimation. Depending on the details
of g and the basis functions, many generalized Fourier coefficients gj may be
needed to achieve a good approximation to g. This is a concern because, due
to the ill-posed inverse problem, it is possible to estimate only low-order gj ’s
with useful precision. Therefore, it is desirable to choose basis functions that
provide a good low-dimensional approximation to g. This is not the same as
parametric modeling because we do not assume that the truncated series ap-
proximation is exact and, consequently, the length of the series approximation
depends on the sample size. Theoretically justified methods for choosing basis
functions in applications are not yet available.

4. NONPARAMETRIC ESTIMATION AND TESTING OF A SMOOTH FUNCTION

Section 4.1 presents an estimator of g in model (1.1)–(1.2). The estimator is
extended to model (1.3)–(1.4) in Section 4.2. Section 4.3 describes two spec-
ification tests that will be used in the empirical illustrations of Section 5. It
is assumed that X�W , and Z are scalar random variables. The extension to
random vectors complicates the notation, but does not affect the main ideas
and results. See Hall and Horowitz (2005), Horowitz (2006, 2011b), Blundell,
Chen, and Kristensen (2007), and Blundell and Horowitz (2007).

4.1. Estimation of g in Model (1.1)–(1.2)

This section presents an estimator of g in model (1.1)–(1.2). The estimator is
a simplified version of the estimator of Blundell, Chen, and Kristensen (2007).
It is analogous to an IV estimator for a linear model and can be computed the
same way. The estimator is also a version of the Petrov–Galerkin method for
solving a Fredholm integral equation of the first kind (Kress (1999)).

To begin the derivation of the estimator, define

m(w)=E(Y |W =w)fW (w)�
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APPLIED NONPARAMETRIC IV ESTIMATION 363

Define the operator A on L2[0�1] by

(Ah)(w)=
∫ 1

0
h(x)fXW (x�w)dx�

Then (3.2) is equivalent to

Ag=m�(4.1)

The estimator of this section is obtained by replacing A and m with series
estimators and solving the resulting empirical version of (4.1).4

To obtain the estimators, let {ψj} be an orthonormal basis for L2[0�1] that
satisfies (3.11). Then we can write

g(x)=
∞∑
j=1

gjψj(x)�

m(w)=
∞∑
j=1

mjψj(w)�

and

fXW (x�w)=
∞∑
j=1

∞∑
k=1

ajkψj(x)ψk(w)�

where gj = 〈g�ψj〉�mj = 〈m�ψj〉, and

ajk =
∫ 1

0

∫ 1

0
fXW (x�w)ψj(x)ψk(w)dxdw�

In addition,

(Ag)(w)=
∞∑
j=1

∞∑
k=1

gjajkψk(w)�

The mj ’s and ajk’s are estimated n−1/2 consistently by

m̂j = n−1
n∑
i=1

Yiψj(Wi)

4Equation (3.5) and the results of Section 3 can be obtained from (4.1) by setting T =A∗A and
r =A∗m, where A∗ is the adjoint of A. The eigenvalues λj are squares of the singular values of
A. The formulation of Section 3 is useful for expository purposes because it does not require fa-
miliarity with the singular value decomposition of an operator. However, (4.1) yields an estimator
that is easier to compute.
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364 JOEL L. HOROWITZ

and

âjk = n−1
n∑
i=1

ψj(Xi)ψk(Wi)�

The functions m and operator A are estimated consistently by

m̂(w)=
Jn∑
j=1

m̂jψj(w)

and

(Âh)(x)=
Jn∑
j=1

Jn∑
k=1

hjâjkψk(w)�

where h is any function in L2[0�1]�hj = 〈h�ψj〉, and the integer Jn is a trunca-
tion point that increases at a suitable rate as n→ ∞.5 The empirical version
of (4.1) is

Âĝ= m̂�(4.2)

The solution to (4.2) has the form of a conventional linear IV estimator.
To obtain it, let Wn and Xn, respectively, denote the n × Jn matrices whose
(i� j) elements are ψj(Wi) and ψj(Xi). Define Yn = (Y1� � � � �Yn)

′. Let {ĝj : j =
1� � � � � Jn} denote the generalized Fourier coefficients of ĝ. That is,

ĝ(x)=
Jn∑
j=1

ĝjψj(x)�(4.3)

Define Ĝ= (ĝ1� � � � � ĝJn)
′. Then the solution to (4.2) is (4.3) with

Ĝ= (W ′
nXn)

−1 W ′
nYn�(4.4)

Ĝ has the form of an IV estimator for a linear model in which the matrix of
variables is Xn and the matrix of instruments is Wn.

When n is small, ĝ in (4.3)–(4.4) can be highly variable. Blundell, Chen, and
Kristensen (2007) proposed stabilizing ĝ by replacing (4.4) with the solution
to a penalized least-squares problem. Blundell, Chen, and Kristensen (2007)

5More generally, the series for m̂ and Â or in the x and w directions can use different basis
functions and have different lengths. This extension is not carried out here. The effects on esti-
mation efficiency of using different basis functions and series lengths for different functions or
directions are unknown at present.
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APPLIED NONPARAMETRIC IV ESTIMATION 365

provided an analytic, easily computed solution to this problem and presented
the results of numerical experiments on the penalization method’s ability to
stabilize ĝ in small samples.

Horowitz (2011b) derived the rate of convergence in probability of ĝ. When
fXW has r <∞ continuous derivatives with respect to any combination of its
arguments and certain other regularity conditions hold, then

‖ĝ− g‖ =Op
[
J−s
n + Jrn(Jn/n)1/2

]
�(4.5)

If r = ∞, the rate of convergence is slower, as is discussed below. When r <∞,
the rate of convergence of ‖ĝ−g‖ is fastest when the terms J−s

n and Jrn(Jn/n)
1/2

converge to zero at the same rate. This happens when Jn ∝ n1/(2r+2s+1), which
gives

‖ĝ− g‖ =Op
[
n−s/(2r+2s+1)

]
�(4.6)

Chen and Reiss (2011) showed that n−s/(2r+2s+1) is the fastest possible rate of
convergence in probability of ‖ĝ − g‖ that is achievable uniformly over func-
tions g and fXW satisfying Horowitz’s (2011b) conditions. The rate of conver-
gence in (4.6) is slower than the n−1/2 rate that is usually achieved by finite-
dimensional parametric models. It is also slower than the rate of convergence
of a nonparametric estimator of a conditional mean or quantile function. For
example, if E(Y |X = x) and the probability density function of X are twice
continuously differentiable, then a nonparametric estimator of E(Y |X = x)
can achieve the rate of convergence n−2/5, whereas the rate in (4.6) with
r = s = 2 is n−2/9. A nonparametric IV estimator converges relatively slowly
because the data contain little information about g in model (1.1)–(1.2), not
because of any defect of the estimator.

In (4.5), the term J−s
n arises from the bias of ĝ that is caused by truncating

the series approximation (4.3). The truncation bias decreases as s increases
and g becomes smoother (see (3.11)). Therefore, increased smoothness of
g accelerates the rate of convergence of ĝ. The term Jrn(Jn/n)

1/2 in (4.5) is
caused by random sampling errors in the estimates of the generalized Fourier
coefficients ĝj . Specifically, Jrn(Jn/n)

1/2 is the rate of convergence in probabil-
ity of [∑Jn

j=1(ĝj − gj)
2]1/2. Because gj is inversely proportional to λj (see the

discussion in Section 3), [∑Jn
j=1(ĝj − gj)

2]1/2 converges more slowly when the
eigenvalues of T converge rapidly than when they converge slowly. When fXW
has smoothness r, the eigenvalues decrease at a rate that is at least as fast as
j−2r (Pietsch (1980)). Therefore, the fastest possible rates of convergence of∑Jn

j=1(ĝj − gj)
2 and ‖ĝ − g‖ decrease as fXW becomes smoother. Smoothness

of fXW increases the severity of the ill-posed inverse problem and reduces the
accuracy with which g can be estimated.

When fXW is the bivariate normal density, r = ∞ and the eigenvalues of T
decrease at the rate e−cj , where c > 0 is a constant. The problem of estimat-
ing g is said to be severely ill posed, and the rate of convergence of ‖ĝ − g‖
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366 JOEL L. HOROWITZ

in (4.3) is Op[(logn)−s]. This is the fastest possible rate. Therefore, when fXW
is very smooth, the data contain very little information about g in (1.1)–(1.2).
Unless g is restricted in other ways, such as assuming that it belongs to a low-
dimensional parametric family of functions or is infinitely differentiable, a very
large sample is needed to estimate g accurately in the severely ill-posed case.

Now let x1�x2� � � � � xL be L points in [0�1]. Horowitz and Lee (2010) gave
conditions under which [ĝ(x1)� � � � � ĝ(xL)] is asymptotically L-variate normally
distributed and the bootstrap can be used to obtain simultaneous confidence
intervals for [g(x1)� � � � � g(xL)]. Horowitz and Lee (2010) also showed how to
interpolate the simultaneous confidence intervals to obtain a uniform confi-
dence band for g. The bootstrap procedure of Horowitz and Lee (2010) esti-
mates the joint distribution of the leading terms of the asymptotic expansions
of ĝ(x�)− g(x�) (� = 1� � � � �L). To describe this procedure, let s2

n(x�) denote
the consistent estimator of the variance of the asymptotic distribution of ĝ(x),

s2
n(x)= n−2

n∑
i=1

{
Â−1[δn(·�Yi�Xi�Wi� ĝ)− δ̄n(·� ĝ)](x)

}2
�

where for any h ∈L2[0�1],

δn(x�Y�X�W �h)= [Y − h(X)]
Jn∑
k=1

ψk(W )ψk(x)

and

δ̄n(x�h)= n−1
n∑
i=1

δn(x�Yi�Xi�Wi�h)�

Let {Y ∗
i �X

∗
i �W

∗
i : i = 1� � � � � n} be a bootstrap sample that is obtained by sam-

pling the estimation data {Yi�Xi�Wi : i= 1� � � � � n} randomly with replacement.
The bootstrap version of the asymptotic form of ĝ(x)− g(x) is

Δn(x)= n−1
n∑
i=1

{
Â−1[δn(·�Y ∗

i �X
∗
i �W

∗
i � ĝ)− δ̄n(·� ĝ)]

}
(x)�

Let A∗
n be the estimator of A that is obtained from the bootstrap sample. De-

fine [s∗n(x)]2 as the bootstrap estimator of the variance of Δn(x),

[s∗n(x)]2 = n−2
n∑
i=1

{
(A∗

n)
−1[δn(·�Y ∗

i �X
∗
i �W

∗
i � g

∗)− δ̄∗
n(·� g∗)](x)}2

�

where g∗ is the estimate of g obtained from the bootstrap sample and
δ̄∗
n(·� g∗) = n−1

∑n

i=1 δn(·�Y ∗
i �X

∗
i �W

∗
i � g

∗). The bootstrap procedure is as fol-
lows.
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APPLIED NONPARAMETRIC IV ESTIMATION 367

Step 1. Draw a bootstrap sample {Y ∗
i �X

∗
i �W

∗
i : i= 1� � � � � n} by sampling the

estimation data {Yi�Xi�Wi : i= 1� � � � � n} randomly with replacement. Use this
sample to form bootstrap estimates Δn(x1)� � � � �Δn(xL) and s∗n(x1)� � � � � s

∗
n(xL).

Compute the statistic

t∗n = max
1≤�≤L

|Δn(x�)|
s∗n(x�)

�

Step 2. Repeat Step 1 many times. LetM be the number of repetitions and let
t∗nm be the value of t∗n obtained on the mth repetition. Let ζ∗

nα = inf{ζ :F∗
M(ζ)≥

α} for any α ∈ (0�1), where

F∗
M(τ)=M−1

M∑
m=1

I(t∗nm ≤ τ)

and I is the indicator function. Then ζ∗
nα is a consistent estimator of the 1 − α

quantile of the bootstrap distribution of t∗n .
Step 3. The simultaneous 1 − α confidence intervals for [ĝ(x1)� � � � � ĝ(xL)]

are

ĝ(x�)− ζ∗
nαsn(x�)≤ g(x�)≤ ĝ(x�)+ ζ∗

nαsn(x�)� �= 1� � � � �L�

Implementation of the estimator (4.3) requires choosing the value of Jn. One
possible choice is an estimator of the asymptotically optimal Jn. The asymp-
totically optimal Jn, denoted here by Jn�opt, minimizes Qn(J) ≡ EA‖ĝ − g‖2,
where EA denotes the expectation with respect to the asymptotic distribu-
tion of ĝ − g. Note that Qn depends on J through ĝ. Define Ĵn�opt to be
an asymptotically optimal estimator of Jn�opt if Qn(Ĵn�opt)/Qn(Jn�opt) →p 1 as
n→ ∞. At present, it is unknown whether such a Ĵn�opt exists. Horowitz (2010)
gave an empirical method for obtaining a truncation point Ĵn that satisfies
Qn(Ĵn)/Qn(Jn�opt)≤ [2+(4+ε) logn] for any ε > 0. Horowitz (2010) presented
Monte Carlo evidence indicating that this estimator performs well with sam-
ples of practical size in both mildly and severely ill-posed estimation problems.

4.2. Extension to Model (1.3)–(1.4)

This section extends the estimator (4.3) to model (1.3)–(1.4), which contains
the exogenous explanatory variable Z. Assume that Z is a scalar whose sup-
port is [0�1]. The data are the independent random sample {Yi�Xi�Wi�Zi : i=
1� � � � � n}.

If Z is discretely distributed with finitely many mass points, then g(x� z),
where z is a mass point, can be estimated by using (4.3) with only observations i
for which Zi = z. The results of Section 4.1 hold with n replaced by the number
of observations for which Zi = z, which is nz = ∑n

i=1 I(Zi = z).
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368 JOEL L. HOROWITZ

If Z is continuously distributed, then g(x� z) can be estimated by using (4.3)
with observations i for which Zi is “close” to z. Kernel weights can be used
to select the appropriate observations. To this end, let K be a kernel function
in the sense of nonparametric density estimation or regression, and let {bn}
be a positive sequence of bandwidths that converges to 0 as n→ ∞. Define
Kb(v)=K(v/b) for any real v and b. Also define

m̂jz = 1
nbn

n∑
i=1

Yiψj(Wi)Kbn(z−Zi)�

âjkz = 1
nbn

n∑
i=1

ψj(Xi)ψk(Wi)Kbn(z−Zi)�

m̂z(w)=
Jn∑
j=1

m̂jzψj(w)�

and

f̂XW Z(x�w�z)=
Jn∑
j=1

Jn∑
k=1

âjkzψj(x)ψk(w)�

Define the operator Âz by

(Âzh)(w�z)=
∫ 1

0
h(x)f̂XW Z(x�w�z)dx

for any h ∈L2[0�1]. Let fXWZ and fW Z denote the probability density functions
of (X�W �Z) and (W �Z), respectively. Estimate g(x� z) for any z ∈ (0�1) by
solving

Âzĝ= m̂z�(4.7)

This is a finite-dimensional matrix equation because Âz is a Jn × Jn matrix and
m̂z is a Jn × 1 vector. Equation (4.7) is an empirical analog of the relation

E(Y |W =w�Z = z)fW Z(w�z)= (Azg)(w�z)�(4.8)

where the operator Az is defined by

(Azh)(w�z)=
∫ 1

0
h(x�z)fXWZ(x�w�z)dw�

Equation (4.8) can be derived from (1.3)–(1.4) by using reasoning like that
used to obtain (3.6).
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APPLIED NONPARAMETRIC IV ESTIMATION 369

Under regularity conditions that are stated in the Section A.1 of the Appen-
dix,

‖ĝ(·� z)− g(·� z)‖2 =Op
[
n−2sκ/(2r+2s+1)

]
�(4.9)

where κ = 2r/(2r + 1). The estimator can be extended to z = 0 and z = 1
by using a boundary kernel (Gasser and Müller (1979), Gasser, Müller, and
Mammitzsch (1985)) in m̂jz and âjkz. Boundary kernels are explained in the
discussion of the second specification test in Section 4.3.

4.3. Two Specification Tests

This section presents two specification tests that will be used in the empirical
illustrations of Section 5. One test is of the hypothesis that g(x� z)=G(x�z�θ)
for all (x� z) ∈ [0�1]2, whereG is a known function and θ is a finite-dimensional
parameter whose value must be estimated from the data. Under this hypothe-
sis, the parametric model G(x�z�θ) satisfies (1.3)–(1.4) for some θ. A similar
test applies to (1.1)–(1.2). In this case, the hypothesis is g(x) =G(x�θ). The
second test presented in this section is of the hypothesis that g(x� z) does not
depend on x. The first test was developed by Horowitz (2006). The second test
is new.

Testing a Parametric Model Against a Nonparametric Alternative

In this test, the null hypothesis, H0, is that

g(x� z)=G(x�z�θ)(4.10)

for a known function G, some finite-dimensional θ in a parameter set Θ, and
almost every (x� z)≡ [0�1]2. “Almost every (x� z)” means every (x� z) except,
possibly, a set of (x� z) values whose probability is 0. The alternative hypothe-
sis, H1, is that there is no θ ∈Θ such that (4.10) holds for almost every (x� z).
The discussion here applies to model (1.3)–(1.4). A test of H0 :g(x)=G(x�θ)
for model (1.1)–(1.2) can be obtained by dropping z and setting �(x� z)= 1 in
the discussion below. The test statistic is

τn =
∫ 1

0

∫ 1

0
S2
n(x� z)dxdz�

where

Sn(x� z)= n−1/2
n∑
i=1

[Yi −G(Xi�Zi� θ̂)]f̂ (−i)XW Z(x�Wi�Zi)�(Zi� z)�
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370 JOEL L. HOROWITZ

θ̂ is a GMM estimator of θ, and f̂ (−i)XW Z is a leave-observation-i-out kernel esti-
mator of fXWZ . That is

f̂ (−i)XW Z(x�w�z)= 1
nb3

n

n∑
j=1
j �=i

Kbn(x−Xj)Kbn(w−Wj)Kbn(z−Zj)�

where K is a kernel function and bn is a bandwidth. In applications, the value
of bn can be chosen by cross-validation. The function � is any function on [0�1]
with the property that

∫ 1

0
�(x� z)h(x)dx= 0

for almost every z ∈ [0�1] only if h(x) = 0 for almost every x ∈ [0�1]. H0 is
rejected if τn is too large. Horowitz (2006) derived the asymptotic distribution
of τn under H0 and H1, and gave a method for computing its critical value.
The τn test is consistent against any fixed alternative model and against a large
class of alternative models whose distance from the null-hypothesis parametric
model is O(n−1/2) or greater.

The test can be understood intuitively by observing that as n → ∞,
n−1/2Sn(x� z) converges in probability to

S∞(x� z)=EXWZ
{[g(X�Z)−G(X�Z�θ∞)]fXWZ(x�W �Z)�(Z�z)

}
�

where EXWZ denotes the expectation with respect to the distribution of
(X�W �Z) and θ∞ is the probability limit of θn as n→ ∞. If g is identified,
then S∞(x� z)= 0 for almost every (x� z) ∈ [0�1]2 only if g(x� z)=G(x�z�θ∞)
for almost every (x� z). Therefore,

τ∞ =
∫ 1

0

∫ 1

0
S∞(x� z)2 dxdz

is a measure of the distance between g(x� z) and G(x�z�θ∞). The test statis-
tic τn is an empirical analog of τ∞.

Testing the Hypothesis That g(x� z) Does Not Depend on x

This test is a modification of the exogeneity test of Blundell and Horowitz
(2007). The null hypothesis, H0, is that

g(x� z)=G(z)(4.11)

for almost every (x� z) ∈ [0�1]2 and some unknown functionG. The alternative
hypothesis, H1, is that there is no G such that (4.11) holds for almost every
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APPLIED NONPARAMETRIC IV ESTIMATION 371

(x� z) ∈ [0�1]2. It follows from (1.3)–(1.4) that G(z) = E(Y |Z = z) if H0 is
true. Accordingly, we set G(z)= E(Y |Z = z) for the rest of the discussion of
the test of H0.

The test statistic is

τ̃n =
∫ 1

0

∫ 1

0
S̃2
n(x� z)dxdz�

where

S̃n(x� z)= n−1/2
n∑
i=1

[
Yi − Ĝ(−i)(Zi)

]
f̂ (−i)XW Z(x�Wi�Zi)�(Zi� z)�(4.12)

In (4.12), � is defined as in the test of a parametric model. Ĝ(−i) and f̂ (−i)XW Z ,
respectively, are leave-observation-i-out “boundary kernel” estimators of the
mean of Y conditional on Z and fXWZ . Boundary kernels are defined in the
next paragraph. The estimators are

f̂ (−i)XW Z(x�w�z)

= 1
nb3

1

n∑
j=1
j �=i

Kb1(x−Xj�x)Kb1(w−Wj�w)Kb1(z−Zj� z)

and

Ĝ(−i)(z)= 1

nb2f̂
(−i)
Z (z)

n∑
j=1
j �=i

YiKb2(z−Zj� z)�

where b1 and b2 are bandwidths, and

f̂ (−i)Z (z)= 1
nb2

n∑
j=1
j �=i

Kb2(z−Zj� z)�

In applications, b1 can be chosen by cross-validation. The value of b2 can be set
at n−7/40 times the value obtained by cross-validation.

The boundary kernel function Kb has the property that for all ξ ∈ [0�1],

b−(j+1)

∫ ξ+1

ξ

ujKb(u�ξ)du=
{

1� if j = 0,
0� if j = 1.

(4.13)
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372 JOEL L. HOROWITZ

If b is small and ξ is not close to 0 or 1, then we can set Kb(u�ξ) = K(u/b),
where K is an “ordinary” kernel. If ξ is close to 1, then we can set Kb(u�ξ)=
K̄(u/b), where K̄ is a bounded, compactly supported function that satisfies∫ ∞

0
ujK̄(u)du=

{
1� if j = 0,
0� if j = 1.

If ξ is close to 0, we can set Kb(u�ξ) = K̄(−u/b). Gasser and Müller (1979)
and Gasser, Müller, and Mammitzsch (1985) gave examples of boundary ker-
nels. A boundary kernel is used here instead of an ordinary kernel because, to
prevent imprecise estimation of G, the probability density function of Z�fZ ,
is assumed to be bounded away from 0. This causes fZ(z) and fXWZ(x�w�z)
to be discontinuous at z = 0 and z = 1. The boundary kernel overcomes the
resulting edge effects.

The τ̃n test rejects H0 if τ̃n is too large. Section A.2 of the Appendix gives
the asymptotic properties of the test, including the asymptotic distribution of τ̃n
under H0, a method for computing the critical value of the test, and the test’s
consistency. The τ̃n test can be understood intuitively by observing that as n→
∞� n−1/2S̃n(x� z) converges in probability to

S̃∞(x� z)=EXWZ
{[g(X�Z)−G∞(Z)]fXWZ(x�W �Z)�(Z�z)

}
�

where G∞(z)=E(Y |Z = z). Therefore, τ̃n is an empirical measure of the dis-
tance between g(x� z) and E(Y |Z = z).

5. EMPIRICAL EXAMPLES

This section presents two empirical examples that illustrate the usefulness of
nonparametric IV estimation and how conclusions drawn from parametric and
nonparametric IV estimators may differ. The first example is about estimation
of an Engel curve. The second is about estimating the effects of class size on
students’ performances on standardized tests.

5.1. Estimating an Engel Curve

This section shows the result of using the method of Section 4.1 to esti-
mate an Engel curve for food. The data are 1655 household-level observations
from the British Family Expenditure Survey. The households consist of mar-
ried couples with an employed head-of-household between the ages of 25 and
55 years. The model is (1.1)–(1.2). Y denotes a household’s expenditure share
on food, X denotes the logarithm of the household’s total expenditures, and
W denotes the logarithm of the household’s gross earnings. Blundell, Chen,
and Kristensen (2007) used the Family Expenditure Survey for nonparametric
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APPLIED NONPARAMETRIC IV ESTIMATION 373

FIGURE 2.——Estimated Engel curve for food.

IV estimation of Engel curves. Blundell, Chen, and Kristensen (2007) also re-
ported the results of an investigation of the validity of the logarithm of gross
earnings as an instrument for expenditures.

The basis functions used here are B-splines with four knots. The estimation
results are similar with five or six knots. The estimated Engel curve is shown
in Figure 2. The curve is nonlinear and different from what would be obtained
with a simple parametric model such as a quadratic or cubic model. The τn test
of Horowitz (2006) that is described in Section 4.3 rejects the hypothesis that
the Engel curve is a quadratic or cubic function (p< 0�05). Thus, in this exam-
ple, nonparametric methods reveal an aspect of data (the shape of the Engel
curve) that would be hard to detect using conventional parametric models.
Of course, with sufficient effort, it may be possible to find a simple paramet-
ric model that gives a curve similar to the nonparametric one. Although such
a parametric model may be a useful way to represent the curve, it could not be
used for valid inference for the reasons explained in Section 2.

5.2. The Effect of Class Size on Students’ Performances on Standardized Tests

Angrist and Lavy (1999) studied the effects of class size on test scores of
fourth and fifth grade students in Israel. Here, I use one of their models for
fourth grade reading comprehension and their data to illustrate differences be-
tween parametric and nonparametric IV estimation and the effects that para-
metric assumptions can have on the conclusions drawn from IV estimation.
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374 JOEL L. HOROWITZ

The data are available at http://econ-www.mit.edu/faculty/angrist/data1/data/
anglavy99. Angrist and Lavy’s substantive conclusions are based on several dif-
ferent models and methods. The discussion in this section is about one model
and is not an evaluation or critique of Angrist and Lavy’s substantive findings,
which are more broadly based.

One of the models that Angrist and Lavy (1999) used is

YCS = β0 +β1XCS +β2DCS + νS +UCS�(5.1)

In this model, YCS is the average reading comprehension test score of fourth
grade students in class C of school S, XCS is the number of students in class C
of school S,DCS is the fraction of disadvantaged students in class C of school S,
νS is a school-specific random effect, andUCS is an unobserved random variable
that is independently distributed across schools and classes.XCS is a potentially
endogenous explanatory variable. The instrument for XCS is

ZCS =ES/ int[1 + (ES − 1)/40]�
where ES is enrollment in school S. The data consist of observations of 2049
classes that were tested in 1991. The IV estimate of β1 in (5.1) is −0.110 with
a standard error of 0.040 (Angrist and Lavy (1999, Table V)). Thus, according
to model (5.1), increasing class size has a negative and statistically significant
effect on reading comprehension test scores.

The nonparametric version of (5.1) is

YCS = g(XCS�DCS)+ νS +UCS; E(νS +UCS|ZCS�DCS)= 0�(5.2)

Figure 3 shows the result of using the method of Section 4.2 to estimate g as
a function of XCS for DCS = 1�5 percent. The basis functions are orthogonal
(Legendre) polynomials, the series length is 3, and the bandwidth is bn = 1�5.
The solid line in the figure is the estimate of g, and the dots show a bootstrap-
based uniform 95% confidence band obtained using the method of Horowitz
and Lee (2010). Unobserved school-specific effects, νS , were handled by using
schools as the bootstrap sampling units. The nonparametrically estimated re-
lation between test scores and class size is nonlinear and nonmonotonic, but
the confidence band is very wide. Functions that are monotonically increasing
and decreasing can fit easily in the band. Moreover, the τ̃n test of Section 4.3
does not reject the hypothesis that test scores are independent of class size
(p> 0�10). Thus, the data and the instrumental variable assumption, by them-
selves, are uninformative about the form of any dependence of test scores on
class size. This does not necessarily imply that test scores and class sizes are in-
dependent. For example, the τ̃n test may not be sufficiently powerful to detect
any dependence, or the effects of class size might be obscured by heterogene-
ity that is not accounted for by DCS . However, the nonparametric model does
not support the conclusion drawn from the linear model that increases in class
sizes are associated with decreased test scores.
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FIGURE 3.——Estimate of test score as a function of class size. The solid line is the estimate;
dashed lines indicate a uniform 95% confidence band.

Average derivatives can be estimated more precisely than functions can, so
it is possible that an estimator of E ∂g(X�D|D = 1�5)/∂X is more informa-
tive about the effects of class size on test scores than is the function g(x�1�5).
The average here is over the distribution of X conditional on D= 1�5. Ai and
Chen (2009) provided asymptotic distributional results for nonparametric IV
estimators of unconditional average derivatives, but there is no existing the-
ory on nonparametric IV estimation of conditional average derivatives such
as E ∂g(X�D|D = 1�5)/∂X . To get some insight into whether an estimate of
the conditional derivative can clarify the relation between test scores and class
size, E ∂g(X�D|D= 1�5)/∂X was estimated by

Ê
∂ĝ(X�D|D= 1�5)

∂X
=

∑
C�S

∂ĝ(XCS�1�5)
∂X

Kbn(DCS − 1�5)

∑
C�S

Kbn(DCS − 1�5)
�(5.3)

The standard error of the estimate was obtained by applying the bootstrap to
the leading term of the asymptotic expansion of the right-hand side of (5.3)
with schools as the bootstrap sampling units. The resulting estimate of the
conditional average derivative is 0.064 with a standard error of 0.14. Therefore,
the nonparametric average derivative estimate does not support the conclusion
from the linear model that increases in class size are associated with decreases
in test scores.
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376 JOEL L. HOROWITZ

The conclusions drawn from the linear model might be persuasive, nonethe-
less, if this model were consistent with the data. However, the τn test of Sec-
tion 4.3 rejects the hypothesis that g is a linear function of XCS and DCS

(p< 0�05). This does not necessarily imply that the linear model is a poor ap-
proximation g in (5.2), but the quality of the approximation is unknown. There-
fore, one should be cautious in drawing conclusions from the linear model. In
summary, the data are uninformative about the dependence, if any, of g in
(5.2) on XCS . The conclusion from (5.1) that increases in class size decrease
test scores is a consequence of the linearity assumption, not of information
contained in the data per se.

6. DISCRETELY DISTRIBUTED EXPLANATORY VARIABLES AND INSTRUMENTS

This section is concerned with identification and estimation of g when, as
happens in many applications, X�W , and Z are discretely distributed random
variables with finitely many points of support. Because Z is exogenous and
discrete, all of the analysis can be carried out conditional on Z being held
fixed at one of its points of support. Accordingly, the discussion in this section
is concerned with identifying and estimating g as a function of X at a fixed
value of Z. The notation displays dependence only on X and W . Section 6.1
discusses identification and estimation of g. Section 6.2 presents empirical il-
lustrations of the results of Section 6.1.

6.1. Identification and Estimation of g

Let the supports of X and W , respectively, be {x1� � � � � xJ} and {w1� � � � �wK}
for finite, positive integers J and K. For j = 1� � � � � J and k= 1� � � � �K, define
gj = g(xj)�mk = E(Y |W = wk), and πjk = P(X = xj|W = wk}. When X and
W are discretely distributed, condition (1.2) is equivalent to

mk =
J∑
j=1

πjkgj� k= 1� � � � �K�(6.1)

LetΠ be the J×Kmatrix whose (j�k) element isπjk. IfK ≥ J and Rank(Π)=
J, then (6.1) can be solved to obtain

g= (ΠΠ′)−1ΠM�(6.2)

where M = (m1� � � � �mK)
′ and g= (g1� � � � � gJ)

′.
An estimator of g that is n−1/2-consistent and asymptotically normal can

be obtained by replacing Π and M in (6.2) with estimators. With data
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APPLIED NONPARAMETRIC IV ESTIMATION 377

{Yi�Xi�Wi : i = 1� � � � � n}, the mk’s and πjk’s are estimated n−1/2 consistently
by

m̂k = n−1
k

n∑
i=1

YiI(Wi =wk)

and

π̂jk = n−1
k

n∑
i=1

I(Xi = xj)I(Wi =wk)�

where

nk =
n∑
i=1

I(Wi =wk)�

The estimator of g is

ĝ= (Π̂Π̂′)−1Π̂M̂�

where Π̂ is the J ×K matrix whose (j�k) element is π̂jk� M̂ = (m̂1� � � � � m̂K)
′,

and ĝ = (ĝ1� � � � � ĝJ)
′. There is no ill-posed inverse problem and, under mild

regularity conditions, there are no other complications.
There are, however, many applications in whichK < J. In some applications,

W is binary, so K = 2. For example, Card (1995) estimated models of earnings
as a function of years of schooling and other variables. Years of schooling is an
endogenous explanatory variable. The instrument for it is a binary indicator of
whether there is an accredited four-year college in an individual’s metropolitan
area.

When W is binary, g is not identified nonparametrically if J > 2, nor are
there informative, nonparametrically identified bounds on g in the absence of
further information or assumptions. A linear model for g, such as that used
by Card (1995), is identified but not testable. Thus, in contrast to the case in
which X and W are continuously distributed, when X and W are discretely
distributed and W has too few points of support, the problem is identification,
not estimation. The remainder of this section discusses what can be learned
about g when it is not point identified.

Chesher (2004) gave conditions under which there are informative, nonpara-
metrically identified bounds on g. Write model (1.1)–(1.2) in the form

Y = g(X)+U; E(U |W =wk)= 0� k= 1� � � � �K(6.3)

and

X =H(W �ε)� ε∼U[0�1]� ε⊥W �(6.4)
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378 JOEL L. HOROWITZ

Equation (6.4) defines H to be the conditional quantile function of X and is a
tautology. Order the points of support ofX so that x1 < x2 < · · ·< xJ . Assume
that

E(U |W =wk�ε= e)= c(e)(6.5)

for all k = 1� � � � �K and some monotonic function c. This is a version of as-
sumption (1.10) of the control function model that is discussed in Section 1.2.
Also assume that there are ē ∈ (0�1) and points wj−1, wj in the support of W
such that

P(X ≤ xj|W =wj)≤ ē≤ P(X ≤ xj−1|W =wj−1)(6.6)

for some j = 1� � � � � J. Chesher (2004) showed that if (6.5) and (6.6) hold, then

min[E(Y |X = xj�W =wj)�E(Y |X = xj�W =wj−1)](6.7)

≤ gj + c(ē)
≤ max[E(Y |X = xj�W =wj)�E(Y |X = xj�W =wj−1)]�

Inequality (6.7) makes it possible to obtain identified bounds on differences
gj − gk if (6.6) holds for j and k with the same value of ē. Specifically,

gj�min − gk�max ≤ gj − gk ≤ gj�max − gk�min�(6.8)

where gj�min and gj�max, respectively, are the lower and upper bounds on gj
in (6.7). The quantities gk�min and gk�max are the bounds obtained by replac-
ing j with k in (6.7). The bounds on gj − gk can be estimated consistently by
replacing the conditional expectations in (6.7) with sample averages. Specifi-
cally, E(Y |X = x�W =w) for any (x�w) in the support of (X�W ) is estimated
by

Ê(Y |X = x�W =w)= n−1
xw

n∑
i=1

YiI(Xi = x�Wi =w)�

where

nxw =
n∑
i=1

I(Xi = x�Wi =w)�

Manski and Pepper (2000) gave conditions under which there are identified
upper and lower bounds on g and an identified upper bound on gj − gk. The
conditions are specified as follows:
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APPLIED NONPARAMETRIC IV ESTIMATION 379

MONOTONE TREATMENT RESPONSE (MTR): Let y(1) and y(2) denote the
outcomes (e.g., earnings) that an individual would receive with treatment val-
ues (that is, values of x) x(1) and x(2), respectively. Then x(2) ≥ x(1) implies
y(2) ≥ y(1).

MONOTONE TREATMENT SELECTION (MTS): Let XS denote the treatment
(e.g., years of schooling) that an individual selects. Let x denote any possible
treatment level. Then x(2) ≥ x(1) implies

E
(
Y |XS = x(2)) ≥E(

Y |XS = x(1))�
Assumption MTR is analogous to Chesher’s (2004) monotonicity condi-

tion (6.5). Assumption MTS replaces the assumption that a conventional in-
strument is available. Manski and Pepper (2000) showed that under MTR and
MTS, ∑

�:x�<xj
E(Y |X = x�)P(X = x�)+E(Y |X = xj)P(X ≥ xj)

≤ gj
≤

∑
�:x�>xj

E(Y |X = x�)P(X = x�)+E(Y |X = xj)P(X ≤ xj)

and

0 ≤ gj − gk ≤
k−1∑
�=1

[E(Y |X = xj)−E(Y |X = x�)]P(X = x�)(6.9)

+ [E(Y |X = xj)−E(Y |X = xk)]P(xk ≤X ≤ xj)

+
J∑

�=j+1

[E(Y |X = x�)−E(Y |X = xk)]P(X = x�)�

These bounds can be estimated consistently by replacing expectations with
sample averages. Confidence intervals for these bounds and for those in (6.8)
can be obtained by taking advantage of the asymptotic normality of sample
averages. See, for example, Horowitz and Manski (2000), Imbens and Manski
(2004), and Stoye (2009).

6.2. An Empirical Example

This section applies the methods of Section 6.1 to nonparametric estima-
tion of the return to a college education, which is defined here as the per-
centage change in earnings from increasing an individual’s years of educa-
tion from 12 to 16. The data are those used by Card (1995). They are avail-
able at http://emlab.berkeley.edu/users/card/data_sets.html and consist of 3010
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380 JOEL L. HOROWITZ

records taken from the National Longitudinal Survey of Young Men. Card
(1995) treated years of education as endogenous. The instrument for years
of education is a binary variable equal to 1 if there is an accredited four-year
college in what Card (1995) calls an individual’s “local labor market” and 0
otherwise. A binary instrument point identifies returns to education in Card’s
parametric models, but it does not provide nonparametric point identification.
We investigate the possibility of obtaining bounds on returns to a college edu-
cation by using the methods of Chesher (2004) and Manski and Pepper (2000).

In the notation of Section 6.1, Y is the logarithm of earnings, X is the num-
ber of years of education, and W is the binary instrument. To use Chesher’s
(2004) method for bounding returns to a college education, the monotonicity
condition (6.6) must be satisfied. This requires either

P(X ≤ J|W = 1)≤ P(X ≤ J − 1|W = 0)(6.10)

or

P(X ≤ J|W = 0)≤ P(X ≤ J − 1|W = 1)(6.11)

for J = 12 and J = 16. Table I shows the relevant empirical probabilities ob-
tained from Card’s (1995) data. Neither (6.10) nor (6.11) is satisfied. There-
fore, Chesher’s (2004) method with Card’s (1995) data and instrument cannot
be used to bound returns to a college education.

Manski’s and Pepper’s (2000) approach does not require an instrument but
depends on the MTR and MTS assumptions, which are not testable. If these
assumptions hold for the population represented by Card’s data, then replac-
ing population expectations in (6.9) with sample averages yields estimated up-
per bounds on returns to a college education. These are shown in Table II for

TABLE I

EMPIRICAL PROBABILITIES OF VARIOUS LEVELS OF EDUCATIONa

Years of Education With Nearby College Without Nearby College

11 0.136 0.228
(0.022) (0.028)

12 0.456 0.578
(0.016) (0.021)

15 0.707 0.775
(0.012) (0.015)

16 0.866 0.915
(0.008) (0.009)

aTable entries are the empirical probabilities that years of education is less than or equal
to 11, 12, 15, and 16 conditional on whether there is a four-year accredited college in an
individual’s local labor market. Quantities in parentheses are standard errors.

 14680262, 2011, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
8662 by Y

ale U
niversity, W

iley O
nline L

ibrary on [23/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



APPLIED NONPARAMETRIC IV ESTIMATION 381

TABLE II

MANSKI–PEPPER (2000) UPPER BOUNDS ON RETURNS TO A UNIVERSITY
EDUCATION

Years of Experience Point Estimate of Upper Bound Upper 95% Confidence Limit

6–7 0.38 0.44
8–10 0.40 0.47

11–23 0.52 0.62

several levels of labor-force experience. Card (1995) estimated returns from
linear models with a variety of specifications. He obtained point estimates in
the range of 36%–78%, depending on the specification, regardless of experi-
ence. The estimates of returns at the lower end of Card’s range are consistent
with the Manski–Pepper bounds in Table II.

7. CONCLUSIONS

Nonparametric IV estimation is a new econometric method that has much
to offer applied research.

• It minimizes the likelihood of specification errors.
• It reveals the information that is available from the data and the as-

sumption of validity of the instrument as opposed to functional form assump-
tions.

• It enables one to assess the importance of functional form assumptions
in drawing substantive conclusions from a parametric model.

As this paper has illustrated with empirical examples, nonparametric esti-
mates may yield results that are quite different from those reached with a para-
metric model. Even if one ultimately chooses to rely on a parametric model to
draw conclusions, it is important to understand when the restrictions of the
parametric model, as opposed to information in the data and the assumption
of instrument validity, are driving the results.

There are also unresolved issues in nonparametric IV estimation. These in-
clude choosing basis functions for series estimators and choosing instruments
if the dimension of W exceeds that of X .

APPENDIX

Section A.1 outlines the proof of (4.9). Section A.2 presents the asymptotic
distributional properties of the τ̃n test of the hypothesis that g(x� z) does not
depend on x.
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382 JOEL L. HOROWITZ

A.1. Outline of Proof of (4.9)

Let ‖(x1�w1)− (x2�w2)‖E denote the Euclidean distance between (x1�w1)
and (x2�w2). Let DjfXWZ(x�w�z) denote any jth partial or mixed par-
tial derivative of fXWZ(x�w�z) with respect to its first two arguments. Let
D0fXWZ(x�w�z) = fXWZ(x�w�z). For each z ∈ [0�1], define m(w�z) =
E(Y |W =w�Z = z)fW Z(w�z). Define the sequence of function spaces

Hns =
{
h=

Jn∑
j=1

hjψj :‖h‖s ≤ C0

}
�

Let Hs be the function space obtained by replacing Jn with ∞ in Hns. Let A∗
z

denote the adjoint of Az . For z ∈ [0�1], define

ρnz = sup
h∈Hns

‖h‖
‖(A∗

zAz)1/2h‖ �

Blundell, Chen, and Kristensen (2007) called ρnz the sieve measure of ill-
posedness and discussed its relation to the eigenvalues of A∗

zAz . Define

gnz(x)=
Jn∑
j=1

gjzψj(x)�

For z ∈ [0�1], define

ajkz =
∫
fXWZ(x�w�z)ψj(x)ψk(w)dxdw�

Let Anz be the operator whose kernel is

anz(x�w)=
Jn∑
j=1

Jn∑
k=1

ajkzψj(x)ψk(w)�

Also define mnz =Anzgnz .
Make the following assumptions.

ASSUMPTION 1: (i) The support of (X�W �Z) is contained in [0�1]3.
(ii) (X�W �Z) has a probability density function fXWZ with respect to Lebesgue
measure. (iii) There are an integer r ≥ 2 and a constant Cf < ∞ such that
|DjfXWZ(x�w�z)| ≤ Cf for all (x�w�z) ∈ [0�1]3 and j = 0�1� � � � � r.
(iv) |DrfXWZ(x1�w1� z)−DrfXWZ(x2�w2� z)| ≤ Cf‖(x1�w1)−(x2�w2)‖E for any
order r derivative, any (x1�w1) and (x2�w2) in [0�1]2, and any z ∈ [0�1].

ASSUMPTION 2: E(Y 2|W = w�Z = z) ≤ CY for each (w�z) ∈ [0�1]2 and
some constant CY <∞.
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APPLIED NONPARAMETRIC IV ESTIMATION 383

ASSUMPTION 3: (i) For each z ∈ [0�1]� (1.3) has a solution g(·� z) with
‖g(·� z)‖s < C0 and s ≥ 2. (ii) The estimator ĝ is as defined in (4.7). (iii) The
function m(w�z) has r + s square-integrable derivatives with respect to w and r
bounded derivatives with respect to z.

ASSUMPTION 4: (i) The basis functions {ψj} are orthonormal, complete on
L2[0�1], and satisfy Cramér’s conditions. (ii) ‖Anz − Az‖ = O(J−r

n ) uniformly
over z ∈ [0�1]. (iii) For any ν ∈L2[0�1] with � square-integrable derivatives, there
are coefficients νj (j = 1�2� � � �) and a constant C <∞ that does not depend on ν
such that ∥∥∥∥∥ν−

J∑
j=1

νjψj

∥∥∥∥∥ ≤ CJ−��

ASSUMPTION 5: (i) The operator Az is nonsingular for each z ∈ [0�1].
(ii) ρnz =O(Jrn) uniformly over z ∈ [0�1]. (iii) As n→ ∞,

ρnz sup
ν∈Hns

‖(Anz −Az)ν‖
‖ν‖ =O(J−s

n )

uniformly over z ∈ [0�1].
ASSUMPTION 6: The kernel function K is a symmetrical, twice continuously

differentiable function on [−1�1], and∫ 1

−1
vjK(v)dv=

{
1� if j = 0,
0� if j ≤ r − 1.

ASSUMPTION 7: (i) The bandwidth, bn, satisfies bn = cbn
−1/(2r+1), where cb is

a constant and 0< cb <∞. (ii) Jn = CJnκ/(2r+2s+1) for some constant CJ <∞.

Assumptions 1 and 2 are smoothness and boundedness conditions. Assump-
tion 3 defines the function being estimated and the estimator. The assumption
requires ‖g(·� z)‖s < C0 (strict inequality) to avoid complications that arise
when g is on the boundary of Hs. Assumption 3 also ensures that the func-
tion m is sufficiently smooth. This function has more derivatives with respect
to w than z because m(w�z)= [Azg(·� z)](w�z), and Az smooths g along its
first argument but not its second. Assumption 4 is satisfied by trigonometric
bases, orthogonal polynomials, and splines that have been orthogonalized by,
say, the Gram–Schmidt procedure. Assumption 5(ii) is a simplified version of
Assumption 6 of Blundell, Chen, and Kristensen (2007). Blundell, Chen, and
Kristensen (2007), and Chen and Reiss (2011) gave conditions under which
this assumption holds. Assumption 5(iii) ensures that Anz is a “sufficiently ac-
curate” approximation to Az on Hns. This assumption complements Assump-
tion 4(ii), which specifies the accuracy ofAnz as an approximation toAz on the
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384 JOEL L. HOROWITZ

larger set Hs. Assumption 5(iii) can be interpreted as a smoothness restriction
on fXWZ . For example, Assumption 5(iii) is satisfied if Assumptions 4 and 5(ii)
hold andAz maps Hs to Hr+s. Assumption 5(iii) also can be interpreted as a re-
striction on the sizes of the values of ajkz for j �= k. Hall and Horowitz (2005)
used a similar diagonality restriction. Assumption 6 requires K to be a higher-
order kernel if fXWZ is sufficiently smooth. K can be replaced by a boundary
kernel (Gasser and Müller (1979), Gasser, Müller, and Mammitzsch (1985)) if
fXWZ does not approach 0 smoothly on the boundary of its support.

PROOF OF (4.9): Use the notation g(x� z) = gz(x)� ĝ(x� z) = ĝz(x), and
m(w�z)=mz(w). For each z ∈ (0�1),

‖ĝz − gz‖ ≤ ‖ĝz − gnz‖ + ‖gnz − gz‖�(A.1)

Moreover,

‖gnz − gz‖ =O(J−s)

by Assumption 4(iii). Therefore,

‖ĝz − gz‖ ≤ ‖ĝz − gnz‖ +O(J−s)�(A.2)

Now consider ‖ĝz − gnz‖. By P(ĝz ∈ Hns)→ 1 as n→ ∞ and the definition
of ρnz ,

‖ĝz − gnz‖ ≤ ρnz‖Az(ĝz − gnz)‖(A.3)

with probability approaching 1 as n→ ∞. In addition, Âzĝz = m̂z and Azgz =
mz . Therefore,

Az(ĝz − gnz)= (Az − Âz)ĝz + Âzĝz −Az(gnz − gz)−Azgz

= (Az − Âz)ĝz + m̂z −mz −Az(gnz − gz)�
The triangle inequality now gives

‖Az(ĝz − gnz)‖ ≤ ‖(Âz −Az)ĝz‖ + ‖m̂z −mz‖ + ‖Az(gnz − gz)‖�
Standard calculations for kernel estimators show that under Assumptions
3(iii), 6, and 7,

‖m̂z −Em̂z‖ =Op
[
J1/2
n n

−r/(2r+1)
]

and

‖Em̂z −mz‖ =O[
J1/2
n n

−r/(2r+1) + J−r−s
n

]
�
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APPLIED NONPARAMETRIC IV ESTIMATION 385

Therefore,

‖m̂z −mz‖ =Op
[
J1/2
n n

−r/(2r+1) + J−r−s
n

]
�

In addition, Anz(gnz − gz) = 0, so ‖Az(gnz − gz)‖ = ‖(Anz −Az)(gnz − gz)‖.
Therefore,

‖Az(gnz − gz)‖ = ‖(Anz −Az)(gnz − gz)‖
‖gnz − gz‖ ‖gnz − gz‖

= O(J−r−s
n )

by Assumptions 4 and 5. Therefore, we have

‖Az(ĝz − gnz)‖ ≤ ‖(Âz −Az)ĝz‖ +Op
(
J1/2
n n

−r/(2r+1) + J−r−s
n

)
�(A.4)

Now consider ‖(Âz −Az)ĝz‖. By the triangle inequality and Assumption 5,

‖(Âz −Az)ĝ‖ ≤ ‖(Âz −Anz)ĝ‖ + ‖(Anz −Az)ĝ‖
= ‖(Âz −Anz)ĝ‖ +O(J−r−s

n )�

For each z ∈ (0�1),

‖(Âz −Anz)ĝz‖ ≤ sup
ν∈Hns

‖(Âz −Az)ν‖�

Write ν in the form

ν =
Jn∑
j=1

νjψj�

where

νj =
∫
ν(x)ψj(x)dx�

Then

‖(Âz −Anz)ν‖ =
Jn∑
k=1

[
Jn∑
j=1

(âjkz − ajkz)νj
]2

�(A.5)

But
∑Jn

j=1 |νj| is bounded uniformly over ν ∈ Hns and n. Moreover,

Jn∑
j=1

νjâjkz =
Jn∑
j=1

νj
1
nbn

n∑
i=1

ψj(Xi)ψk(Wi)Kbn(z−Zi)�
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386 JOEL L. HOROWITZ

Therefore, it follows from Bernstein’s inequality that

Jn∑
j=1

νj(âjkz −Eâjkz)=Op
[
(nbn)

−1/2
]

uniformly over ν ∈ Hns. Therefore,

‖(Âz −EÂnz)ν‖ =O[
J1/2
n /(nbn)

1/2
]

(A.6)

uniformly over ν ∈ Hns. In addition, Eâjkz = ajkz + O(brn). Therefore, bound-
edness of

∑Jn
j=1 |νj| gives

Jn∑
j=1

(Eâjkz − ajkz)νj =O(brn)

and

‖(EÂz −Anz)ν‖ =O(
J1/2
n b

r
n

)
(A.7)

uniformly over ν ∈ Hns. Combining (A.6) and (A.7) and using Assumption 7
gives

sup
ν∈Hns

‖(Âz −Anz)ν‖ =Op
[
J1/2
n n

−r/(2r+1)
]
�

Therefore,

sup
ν∈Hns

‖(Âz −Az)ν‖ =Op
[
J1/2
n n

−r/(2r+1) + J−r−s
n

]
�(A.8)

Combining (A.4) and (A.8) gives

‖Az(ĝz − gnz)‖ =Op
[
J1/2
n n

−r/(2r+1) + J−r−s
n

]
�

This result and Assumption 5(ii) imply that

ρnz‖Az(ĝz − gnz)‖ =Op
[
Jr+1/2
n n−r/(2r+1) + J−s

n

]
�(A.9)

The theorem follows by combining (A.2), (A.3), and (A.9). Q.E.D.

A.2. Asymptotic Properties of the τ̃n Test

Let ‖(x1�w1� z1)− (x2�w2� z2)‖E denote the Euclidean distance between the
points (x1�w1� z1) and (x2�w2� z2). LetDjfXWZ denote any jth partial or mixed
partial derivative of fXWZ . Set D0fXWZ(x�w�z)= fXWZ(x�w�z). Let s ≥ 2 be
an integer. Define V = Y −G(Z) and let fZ denote the density of Z. Define
Tz =A∗

zAz . Make the following assumptions.
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APPLIED NONPARAMETRIC IV ESTIMATION 387

ASSUMPTION A: (i) The support of (X�W �Z) is contained in [0�1]3.
(ii) (X�W �Z) has a probability density function fXWZ with respect to Lebesgue
measure. (iii) There is a constant CZ > 0 such that fZ(z) ≥ CZ for all z ∈
supp(Z). (iv) There is a constant Cf < ∞ such that |DjfXWZ(x�w�z)| ≤
Cf for all (x�w�z) ∈ [0�1]3 andj = 0�1�2, where derivatives at the bound-
ary of supp(X�W �Z) are defined as one-sided. (v) |DsfXWZ(x1�w1� z1) −
DsfXZW (x2�w2� z2)| ≤ Cf‖(x1�w1� z1)− (x2�w2� z2)‖E for any second derivative
and any(x1�w1� z1)� (x2�w2� z2) ∈ [0�1]3. (vi) Tz is nonsingular for almost every
z ∈ [0�1].

ASSUMPTION B: (i) E(U |Z = z�W = w) = 0 and E(U2|Z = z�W = w) ≤
CUV for each (z�w) ∈ [0�1]2 and some constant CUV <∞. (ii) |g(x� z)| ≤ Cg for
some constant Cg <∞ and all (x� z) ∈ [0�1]2.

ASSUMPTION C: (i) The function G satisfies |DjG(z)| ≤ Cf for all z ∈ [0�1]
and j = 0�1�2. (ii) |DsG(z1)−DsG(z2)| ≤ Cf |z1 − z2| for any second derivative
and any (z1� z2) ∈ [0�1]2. (iii) E(V 2|Z = z)≤ CUV for each z ∈ [0�1].

ASSUMPTION D: (i)Kb satisfies (4.13) and |Kb(u2� ξ)−Kb(u1� ξ)| ≤ CK|u2 −
u1|/b for all u2�u1, all ξ ∈ [0�1], and some constant CK < ∞. For each ξ ∈
[0�1]�Kh(b�ξ) is supported on [(ξ− 1)/b�ξ/b] ∩ K, where K is a compact inter-
val not depending on ξ. Moreover,

sup
b>0�ξ∈[0�1]�u∈K

|Kb(bu�ξ)|<∞�

(ii) The bandwidth b1 satisfies b1 = cb1n
−1/7, where cb1 <∞ is a constant. (iii) The

bandwidth, b2, satisfies b2 = cb2n
−α, where cb2 <∞ is a constant and 1/4< α <

1/2.

Assumption A(iii) is used to avoid imprecise estimation of G in regions
where fZ is close to 0. The assumption can be relaxed by replacing the fixed
distribution of (X�Z�W ) by a sequence of distributions with densities {fnXZW }
and {fnZ} (n = 1�2� � � �) that satisfy fnZ(z) ≥ Cn for all (z) ∈ [0�1] and a se-
quence {Cn} of strictly positive constants that converges to 0 sufficiently slowly.
Assumption A(vi) combined with the moment condition E(U |X�Z) = 0 im-
plies that g is identified and the instruments W are valid in the sense of being
suitably related to X . Assumption D(iii) implies that the estimator of G is
undersmoothed. Undersmoothing prevents the asymptotic bias of Ĝ(−i) from
dominating the asymptotic distribution of τ̃n. The remaining assumptions are
standard in nonparametric estimation.

The τ̃n test is a modification of the exogeneity test of Blundell and Horowitz
(2007), and its properties can be derived by using the methods of that paper.
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388 JOEL L. HOROWITZ

Accordingly, the properties of the τ̃n test are stated here without proof. Define
Vi = Yi −G(Zi) (i= 1� � � � � n),

Bn(x� z)= n−1/2
n∑
i=1

Vi

[
fXZW (x�Zi�Wi)− 1

fZ(Zi)

∫ 1

0
tZi(ξ�x)dξ

]

× �(Zi� z)�
and

R(x1� z1;x2� z2)=E[Bn(x1� z1)Bn(x2� z2)]�
Define the operator Ω on L2[0�1]2 by

(Ωh)(x� z)=
∫ 1

0
R(x�z;ξ�ζ)h(ξ�ζ)dξdζ�

Let {ωj : j = 1�2� � � �} denote the eigenvalues of Ω sorted so that ω1 ≥ ω2 ≥
· · · ≥ 0. Let {χ2

1j : j = 1�2� � � �} denote independent random variables that are
distributed as chi-square with 1 degree of freedom. Define the random variable

τ̃∞ =
∞∑
j=1

ωjχ
2
1j�

For any α such that 0< α< 1, let ξα denote the 1 − α quantile of the distribu-
tion of τ∞. Then

RESULT 1: Under H0� τ̃n →d τ̃∞.

RESULT 2: Under H1,

lim
n→∞

P(τ̃n > ξα)= 1

for any α such that 0<α< 1. Thus, the τ̃n test is consistent.

Result 3 shows that for any ε > 0 and as n→ ∞, the τ̃n test rejects H0 with
probability exceeding 1 − ε uniformly over a set of functions g whose distance
fromG is O(n−1/2). The practical consequence of this result is to define a large
class of alternatives against which the τ̃n test has high power in large samples.
The following additional notation is used. Let L be the operator on L2[0�1]
that is defined by

(Lh)(z)=
∫ 1

0
h(ζ)�(ζ� z)dζ�

 14680262, 2011, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
8662 by Y

ale U
niversity, W

iley O
nline L

ibrary on [23/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



APPLIED NONPARAMETRIC IV ESTIMATION 389

Define q(x� z) = g(x� z) − G(z). Let fXZW be fixed. For each n = 1�2� � � �
and finite C > 0, define Fnc as a set of distributions of (Y�X�Z�W ) such
that (i) fXZW satisfies Assumption A; (ii) E[Y − g(X�Z)|Z�W ] = 0 for some
function g that satisfies Assumption B with U = Y − g(X�Z); (iii) E(Y |Z =
z) = G(z) for some function G that satisfies Assumption C with V = Y −
G(Z); (iv) ‖LTzq‖ ≥ n−1/2C, where ‖ · ‖ denotes the L2[0�1]2 norm; and
(v) hs1(logn)‖q‖/‖LTzq‖ = o(1) as n → ∞. Fnc is a set of distributions of
(Y�X�Z�W ) for which the distance of g from G shrinks to zero at the rate
n−1/2 in the sense that Fnc includes distributions for which‖q‖ =O(n−1/2). Con-
dition (v) rules out distributions for which q depends on (x� z) only through se-
quences of eigenvectors of Tz whose eigenvalues converge to 0 too rapidly. The
practical significance of condition (v) is that the τ̃n test has low power when g
differs from G only through eigenvectors of Tz with very small eigenvalues.
Such differences tend to oscillate rapidly (that is, to be very wiggly) and are
unlikely to be important in most applications. The uniform consistency result
is as follows.

RESULT 3: Given any ε > 0, any α such that 0< α < 1, and any sufficiently
large (but finite) C,

lim
n→∞

inf
Fnc

P(τ̃n > ξα)≥ 1 − ε�

The remainder of this section explains how to obtain an approximate as-
ymptotic critical value for the τ̃n test. The method is based on replacing the
asymptotic distribution of τ̃n with an approximate distribution. The difference
between the true and approximate distributions can be made arbitrarily small
under both the null hypothesis and alternatives. Moreover, the quantiles of the
approximate distribution can be estimated consistently as n→ ∞. The approx-
imate 1 − α critical value of the τ̃n test is a consistent estimator of the 1 − α
quantile of the approximate distribution.

We now describe the approximation to the asymptotic distribution of τ̃n.
Given any ε > 0, there is an integer Kε <∞ such that

0<P

(
Kε∑
j=1

ωjχ
2
1j ≤ t

)
− P(τ̃∞ ≤ t) < ε

uniformly over t. Define

τ̃ε =
Kε∑
j=1

ωjχ
2
1j�

Let zεα denote the 1 − α quantile of the distribution of τ̃ε. Then 0 < P(τ̃∞ >
zεα)−α< ε. Thus, using zεα to approximate the asymptotic 1 −α critical value
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390 JOEL L. HOROWITZ

of τ̃n creates an arbitrarily small error in the probability that a correct null
hypothesis is rejected. Similarly, use of the approximation creates an arbitrarily
small change in the power of the τ̃n test when the null hypothesis is false. The
approximate 1 − α critical value for the τ̃n test is a consistent estimator of the
1 −α quantile of the distribution of τ̃ε. Specifically, let ω̂j (j = 1�2� � � � �Kε) be
a consistent estimator of ωj under H0. Then the approximate critical value of
τ̃n is the 1 − α quantile of the distribution of

τ̂nε =
Kε∑
j=1

ω̂jχ
2
1j�

This quantile can be estimated with arbitrary accuracy by simulation. In appli-
cations, Kε can be chosen informally by sorting the ω̂j ’s in decreasing order
and plotting them as a function of j. They typically plot as random noise near
ω̂j = 0 when j is sufficiently large. One can choose Kε to be a value of j that
is near the lower end of the “random noise” range. The rejection probability
of the τ̃n test is not highly sensitive to Kε, so it is not necessary to attempt
precision in making the choice.

We now explain how to obtain the estimated eigenvalues {ω̂j}. Let f̂XZW be
a kernel estimator of fXZW . Define

t̂z(x1�x2)=
∫ 1

0
f̂XZW (x1� z�w)f̂XZW (x2� z�w)dw�

Estimate the Vi’s by generating data from an estimated version of the model

Ỹ =G(Z)+ Ṽ �(A.10)

where Ỹ = Y − E[Y − G(Z)|Z�W ] and Ṽ = Ỹ − G(Z). Model (A.10) is
identical to model (1.3)–(1.4) under H0. Moreover, the moment condition
E(Ṽ |Z�W ) = 0 holds regardless of whether H0 is true. Observe that Ṽ =
Y − E(Y |Z�W ). Let Ê(−i)(Y |Z�W ) denote the leave-observation-i-out non-
parametric regression of Y on (Z�W ). Estimate Vi by

V̂i = Yi − Ê(−i)(Zi�Wi)�

Now define

r̂(x�Zi�Wi)= f̂XZW (x�Zi�Wi)− 1

f̂Z(Zi)

∫ 1

0
t̂Zi (ξ�x)dξ�

R(x1� z1;x2� z2) is estimated consistently by

R̂(x1� z1�x2� z2)= n−1
n∑
i=1

r̂(x1�Zi)r̂(x2�Zi)�(Zi� z1)�(Zi� z2)V̂
2
i �
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APPLIED NONPARAMETRIC IV ESTIMATION 391

Define the operator Ω̂ on L2[0�1] by

(Ω̂ψ)(x� z)=
∫ 1

0
R̂(x� z;ξ�ζ)ψ(ξ�ζ)dξdζ�

Denote the eigenvalues of Ω̂ by {ω̂j : j = 1�2� � � �} and order them so that ω̂M1 ≥
ω̂M2 ≥ · · · ≥ 0. Then the ω̂j ’s are consistent estimators of the ωj ’s.

To obtain an accurate numerical approximation to the ω̂j ’s, let F̂(x� z) de-
note the n × 1 vector whose ith component is r̂(x�Zi�Wi)�(Zi� z) and let Υ
denote the n× n diagonal matrix whose (i� i) element is V̂ 2

i . Then

R̂(x1� z1;x2� z2)= n−1F̂(x1� z1)
′ΥF̂(x2� z2)�

The computation of the eigenvalues can now be reduced to finding the eigen-
values of a finite-dimensional matrix. To this end, let {φj : j = 1�2� � � �} be a
complete, orthonormal basis for L2[0�1]2. Let {ψj} be a complete orthonormal
basis for L2[0�1]. Then

f̂XZW (x�Z�W )�(Z�z)=
∞∑
j=1

∞∑
k=1

d̂jkφj(x� z)φk(Z�W )�

where

d̂jk =
∫ 1

0
dx

∫ 1

0
dz1

∫ 1

0
dz2

∫ 1

0
dw f̂XZW (x� z2�w)

× �(z2� z1)φj(x� z1)φk(z2�w)�

and

�(Z�z)

∫ 1

0
t̂Z(ξ�x)dξ=

∞∑
j=1

∞∑
k=1

âjkφj(x� z)ψk(Z)�

where

âjk =
∫ 1

0
dx

∫ 1

0
dz1

∫ 1

0
dz2

∫ 1

0
dξ t̂z1(ξ�x)�(z1� z2)φj(x� z2)ψk(z1)�

Approximate f̂XZW (x�Z�W )�(Z�z) and �(Z�z)
∫ 1

0 t̂Z(ξ�x)dξ, respectively, by
the finite sums

Πf(x� z�W �Z)=
M∑
j=1

M∑
k=1

d̂jkφj(x� z)φk(Z�W )
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392 JOEL L. HOROWITZ

and

Πt(x� z�Z)=
M∑
j=1

M∑
k=1

âjkφj(x� z)ψk(Z)

for M <∞. Since f̂XZW � and �
∫ 1

0 t̂Z dξ are known functions, M can be chosen
to approximate them with any desired accuracy. Let Φ be the n × L matrix
whose (i� j) component is

Φij = n−1/2
L∑
k=1

[d̂jkφk(Zi�Wi)− âjkψk(Zi)/f̂Z(Zi)]�

The eigenvalues of Ω̂ are approximated by those of the L×L matrix Φ′ΥΦ.
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